

Technical Information

Schöck Isokorb® XT for reinforced concrete structures

November 2020

Telephone hotline for design support services Telephone: 01865 290 890 Fax: 01865 290 899 design@schoeck.co.uk

Planning tools –

downloads and requests Telephone: 01865 290 890 Fax: 01865 290 899 design@schoeck.co.uk www.schoeck.co.uk

CPD Seminars and on-site consultation Telephone: 01865 290 890 Fax: 01865 290 899 www.schoeck.co.uk

Planning and consulting service

The engineers of Schöck's application engineering department would be very happy to advise you on static, structural and building-physics questions and will produce for you proposals for your solution with calculations and detailed drawings. For this please send your planning documentation (general arrangements, sections, static data) with the address of the building project to:

Schöck Ltd

Staniford House 4 Wedgwood Road Bicester Oxfordshire OX26 4UL

Telephone hotline for design support services

Tel.: 01865 290 890 Fax: 01865 290 899 E-Mail: design@schoeck.co.uk

Planning tools - downloads and requests

Tel.: 01865 290 890 Fax: 01865 290 899 E-Mail: design@schoeck.co.uk Web: www.schoeck.co.uk

CPD Seminars and on-site consultation

Tel.: 01865 290 890 Fax: 01865 290 899 Web: www.schoeck.co.uk

Notes | Symbols

Technical Information

- This Technical Information on the respective product application is valid only if complete and therefore may only be reproduced as a whole. With texts and graphics published solely as extracts there is a danger of communicating insufficient or even misleading information. Therefore dissemination is the sole responsibility of the user or the person carrying out the process!
- This Technical Information is valid solely for the United Kingdom and takes into account the country's specific approvals and standards.
- Figure 1. If the installation takes place in another country then the valid Technical Information of the respective country is to be applied.
- ▶ The current Technical Information is to be applied. A current version is available at www.schoeck.co.uk/download

Installation instructions

Current installation instructions can be found online at: www.schoeck.co.uk/download

Special constructions - bending of reinforcing steel

Some connection situations cannot be realised with those standard product variants presented in this Technical Information. In this case special designs can be requested from the application engineering department (for contact details see page3). This applies, for example, with additional requirements as a result of prefabricated construction (limitations due to technical manufacturing constraints or through transportation width), which can possibly be met using coupler bars. The bending of bars required for special constructions are carried out in the factory in each case on the individual steel bar. With this, it is monitored and ensured that the conditions of the general building supervisory approvals and of BS EN 1992 1-1 (EC2) and BS EN 1992-1-1/NA are observed with regard to bending of reinforcing steel.

Attention: If reinforcing steel in the Schöck Isokorb[®] is bent or bent and bent back on-site, the observation and the monitoring of the respective conditions lie outside the influence of Schöck Bauteile GmbH. Therefore, in such cases, the warranty is invalidated.

Tags

\rm Hazard note

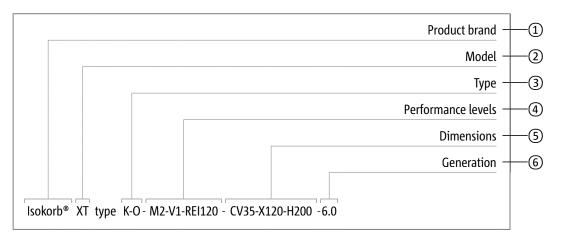
The yellow triangle with the exclamation mark indicates a hazard note. This means there is a danger to life and limb if compliance is not observed.

🧾 Info

The square with "i" indicates important information which must be read in conjunction with the design.

🗹 Check list

The square with tick indicates the check list. Here the essential points of the design are summarised.


Table of contents

	Page
Summary	6
Explanation for the naming of Schöck Isokorb® types	6
Summary of types	8
Fire protection	13
Reinforced concrete – reinforced concrete	17
Planning information	18
Schöck Isokorb® XT type K	25
Schöck Isokorb® XT type C	43
Schöck Isokorb® XT type K-U, K-O	61
Schöck Isokorb® XT type Q, Q-VV, Q-Z	93
Schöck Isokorb® XT type Q-P, Q-P-VV, Q-PZ	109
Schöck Isokorb® XT type H	123
Schöck Isokorb® XT type Z	135
Schöck Isokorb® XT type D	141
Schöck Isokorb® XT type A	151
Schöck Isokorb® XT type F	173
Schöck Isokorb® XT type O	187
Schöck Isokorb® XT type B	197
Schöck Isokorb® XT type W	205

Explanation for the naming of Schöck Isokorb® types

The systematic naming convention for the Schöck Isokorb[®] product group has changed. This page contains information about the name components for easier conversion.

The type designation has a strict structure. However, the sequence of the name components always remains the same.

1 Product brand

Schöck Isokorb®

2 Model

In future, the model designation will be a fixed name component of every Isokorb[®]. It stands for a core characteristic of the product. The corresponding abbreviation will always be positioned before the type word.

Model	Core characteristics of the products	Connection	Components
ХТ	For extra thermal separation	Reinforced concrete – reinforced concrete, Steel – reinforced concrete	Balcony, access walkway, canopy, floor slab, parapet, balustrade, corbel, beam, wall
СХТ	With Combar® for extra thermal separation	Reinforced concrete – Reinforced concrete	Balcony, walkway, canopy
т	For thermal separation	Reinforced concrete – reinforced concrete, Steel – reinforced concrete, Steel – steel	Balcony, access walkway, canopy, floor slab, parapet, balustrade, corbel, beam, wall
RT	For renovation with thermal separation	Reinforced concrete – reinforced concrete, Steel – reinforced concrete	Balcony, walkway, canopy, beam

③ Туре

The type is a combination of the following name components:

Basic type

static or geometric connection variant

	Basic type				
K	K Balcony, canopy – cantilevered		Parapet, balustrade		
Q	Balcony, canopy – supported (shear force)	В	Beam, downstand beam		
С	Corner balcony W Shear wall		Shear wall		
Н	Balcony with horizontal loads	SK Steel balcony – cantilevered			
Z Balcony with intermediate insulation SQ Steel balcony – supported (shear force)		Steel balcony – supported (shear force)			
D	Floor slab – continuous (indirectly mounted)	S	Steel structure		

	Static connection variant			
Z	Restraint-free			
Р	Punctual			
۷	Shear force			
N	Normal force			

	Geometric connection variant
L	Arrangement left of viewpoint
R	Arrangement right of viewpoint
U	Balcony with height offset downwards or wall connection
0	Balcony with height offset upwards or wall connection
	P

4 Performance levels

Performance levels include load-bearing levels and fire protection. The various load-bearing levels of an Isokorb[®] type are numbered consecutively, beginning with 1 for the lowest load-bearing level. Different Isokorb[®] types with the same load-bearing level do not have the same load-bearing capacity. The load-bearing level must always be determined via the design and calculation tables or the calculation program.

The load-bearing level has the following name components:

- Main load-bearing level: Combination of internal static force and number
- Secondary load-bearing level: Combination of internal static force and number

	Internal static force of the main load capacity			
М	Moment			
MM	Moment with positive or negative force			
V	Shear force			
VV	Shear force with positive or negative force			
Ν	Normal force			
NN	Normal force with positive or negative force			

	Internal static force of the secondary load-bearing level			
۷	Shear force			
vv	Shear force with positive or negative force			
Ν	Normal force			
NN	Normal force with positive or negative force			

The name component for the fire protection contains the fire resistance class or RO if no fire protection is required.

	Fire resistance class
REI	R – load bearing capacity, E – integrity, I – insulation under the effects of a fire
RO	No fire protection

(5) Dimensions

The following name components are part of the dimensions:

- Concrete cover CV
- Bond length LR, bond height HR
- Insulating element thickness X, height H, length L, width W
- Diameter of thread D

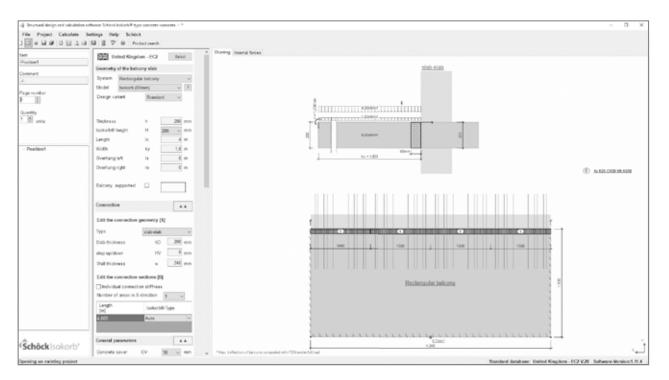
6 Generation

Each type designation ends with a generation number.

Application	Production type	Schöck Iso	korb® type		
Free cantilevered balconies					
XT type K	Building siteIn-situ concrete balconiesPrecast concrete workCompletely prefabricated balconiesPrefabricated component balconies	XT type K		Page	25
Free cantilevered balconies					
XT type C	Building site In-situ concrete balconies Precast concrete work	XT type C	HTE	Page	43
	Prefabricated component balconies				
Free cantilevered balconies with height offset	a downwards Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies	XT type K-U		Page	61
Free cantilevered balconies with height offset	t upwards				
	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies	XT type K-O	COMPACE	Page	61

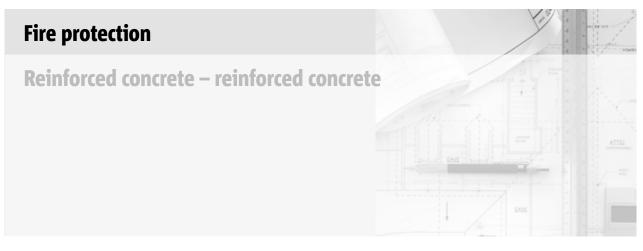
Summary

Application	Production type	Schöck Isokorb® type				
Supported balconies						
XT type Q	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	XT type Q	Page	93		
Supported balconies with positive and negat	ive shear force Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	XT type Q-VV	Page	93		
Zero-stress shear force connection			-			
XT type Q-Z	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	XT type Q-Z	Page	93		
Supported balconies with point load peaks						
XT type Q-P	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	XT type Q-Р	Page	109		
Supported balconies with positive and negat	ive shear force with point load peaks Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	XT type Q-P-VV	Page	109		
Zero-stress shear force connection	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	XT type Q-PZ	Page	109		


Application	Production type	Schöck Isokorb® type	
Addition for horizontal loads			
XT type H	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	ХТ туре Н	Page 12:
Addition as insulating adapter			
XT type Z	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	XT type Z	Page 13
Continuous floors with bending momemts an	a shear forces Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	XT type D	Page 14:
Balustrades and parapets	Building site In-situ concrete Precast concrete work Completely prefabricated part	XT type A	Page 15:
For attached balustrades	Building site In-situ concrete Precast concrete work Completely prefabricated part	XT type F	Page 17

Application	Production type	Schöck Isokorb® type					
Corbel	Corbel						
XT type O	Building site In-situ concrete Precast concrete work Completely prefabricated part	XT type O	Page 187				
Free cantilevered downstand beams and rein	forced concrete beams						
XT type B	Building site In-situ concrete Precast concrete work Completely prefabricated part	XT type B	Page 197				
Free cantilevered shear walls							
Tree cantilevered shear wails	Building site In-situ concrete Precast concrete work Completely prefabricated part	XT type W	Page 205				

Design software


The Schöck Isokorb® design software provides the rapid design of thermally separated structures.

The Schöck Isokorb[®] design software is available as a free download and can also be applied for on DVD. It runs under MS Windows using MS Framework 4.6.1.

Software

- Administrator rights are required for installation of the software.
- Upwards from Windows 7, with an update, the software is to be started using administrator rights (right mouse click on Schöck Icon; selection: carry out using administrator rights).

🚺 Info

Technical information on the thermal insulation and impact sound insulation can be found under: www.schoeck.co.uk/download/building-physics

Fire protection configuration

Fire protection configuration Schöck Isokorb® XT

The Schöck Isokorb® XT comes as standard with fire protection configuration (REI120).

e.g. with fire protection XT type K-M4-V1-REI120-CV35-X120-H200-6.0

For this purpose, fire protection boards are installed on the upper and lower sides of the Schöck Isokorb[®] (see figure). Prerequisite for the fire protection classification of the balcony connection is that the balcony slab and the ceiling also fulfil the requirements for the necessary fire resistance class according to BS EN 1992-1-1 and -2 (EC 2. If, in addition to the load-bearing capacity (R) intrgrity (E) and insulation (I) are aalso required in case of fire, then the cutouts between the Schöck Isokorb[®] are to be closed e. g. using the Schöck Isokorb[®] XT type Z with the fire protection configuration.

The Schöck Isokorb®XT has been checked as enclosing on the basis of floors acc. to BS EN 1365-2. According to BS EN13501-2 only the requirement R (load bearing capacity in cases of fire) is placed on balconies. Basis for this testing is BS EN 1365-5. In addition, for fire protection of the Schöck Isokorb®, testing continues to be carried on the basis of floors acc. to BS EN 1365-2. From this results the classification REI.

(R - load bearing capacity, E - integrity, I - insulation)

The requirements from the fire tests with the Schöck Isokorb[®] using flush integrated lateral fire protection bands or 10 mm projecting fire protection boards has been implemented. The integrated fire protection bands made from material forming insulation layers or respectively the 10 mm projecting fire protection boards on the upper side of the Schöck Isokorb[®], ensure that the joints, which have opened due to the effect of the fire, are closed. Thus the room integrity and the insulation in the case of fire are ensured (see figures below).

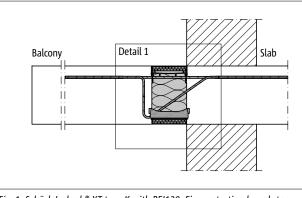


Fig. 1: Schöck Isokorb® XT type K with REI120: Fire protection boards top and bottom; laterally integrated fire protection strips

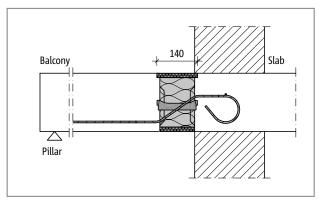


Fig. 3: Schöck Isokorb® XT type Q with REI120: Fire protection board top projecting laterally

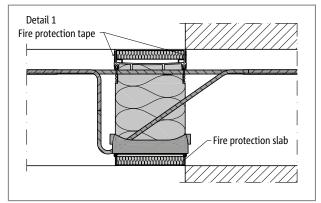


Fig. 2: Schöck Isokorb® XT type K with REI120: Detail 1

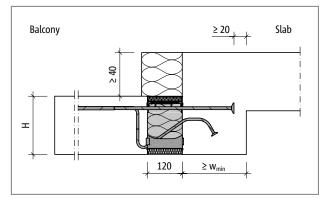


Fig. 4: Schöck Isokorb® XT type K-U with REI120: Fire protection board top and bottom; laterally integrated fire protection strips

Fire protection classes

Fire protection classes REI120, R90, EI120

The reaction to fire of structural components is classified on the basis of the European Standard BS EN 13501-2.

The Schöck Isokorb® XT achieves the following fire protection classes:

Schöck Isokorb® XT type	K, C, Q, H, D ,A, F, O	B, W
Fire protection class	REI120	R 90

Schöck Isokorb® XT type	Z
Fire protection class	EI120

Notes

🚺 Notes

- ▶ The Schöck Isokorb® XT type H is basically to be combined with Schöck Isokorb® types of length 1 m.
- The Schöck Isokorb® XT types Q-P, Q-P-VV, Q-PZ can be employed individually, provided the mode of operation of the load-bearing system is so selected that the load application and the load further transfer into the connection areas provided on both the floor and balcony sides are ensured,. The slab design and the therefrom resultant on-site reinforcement arrangement must be matched to the point load application.
- With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- A static verification is to be provided for the adjacent reinforced concrete structural component on both sides of the Schöck Isokorb[®].
- The tight fit between the thrust bearings and the concrete must be ensured, therefore lift joints must be arranged underneath the thrust bearings. With construction joints (BS EN 1992-1-1/NA) between precast concrete members and the Schöck Isokorb[®] an on-site concreting or grouting strips ≥ 100 mm is carried out.
- > The fire protection board of the Schöck Isokorb® may not be penetrated by nails or screws.

Special constructions - bending of reinforcing steel

Some connection situations cannot be realised with those standard product variants presented in this Technical Information. In this case special designs can be requested from the application engineering department (for contact details see page3). This applies, for example, with additional requirements as a result of prefabricated construction (limitations due to technical manufacturing constraints or through transportation width), which can possibly be met using coupler bars. The bending of bars required for special constructions are carried out in the factory in each case on the individual steel bar. With this, it is monitored and ensured that the conditions of the general building supervisory approvals and of BS EN 1992 1-1 (EC2) and BS EN 1992-1-1/NA are observed with regard to bending of reinforcing steel.

Attention: If reinforcing steel in the Schöck Isokorb[®] is bent or bent and bent back on-site, the observation and the monitoring of the respective conditions lie outside the influence of Schöck Bauteile GmbH. Therefore, in such cases, the warranty is invalidated.

HTE-Compact®

 HTE-Compact® 20
 HTE-Compact® 30
 HTE-Compact® 30 with special stirrup

 a_{\pm} a_{\pm} a_{\pm} a_{\pm}
 a_{\pm} a_{\pm} a_{\pm} a_{\pm}

Summary of the application of the HTE-Compact® pressure bearing in the Schöck Isokorb® types.

HTE-Compact[®] 20

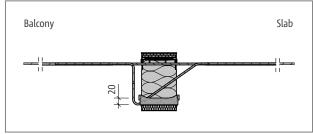
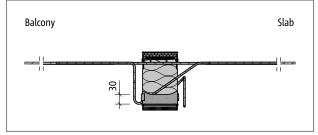




Fig. 5: Schöck Isokorb® XT type K-M1 to M4: Product section

HTE-Compact[®] 30 with special stirrup

HTE-Compact[®] 30

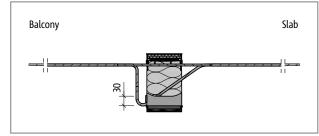


Fig. 6: Schöck Isokorb® XT type K-M5, K-M6: Product section

HTE-Compact[®] 20

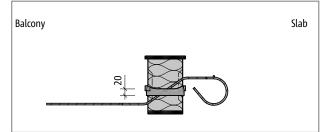


Fig. 8: Schöck Isokorb® XT type Q-V1 to V4: Product section

FEM guidelines

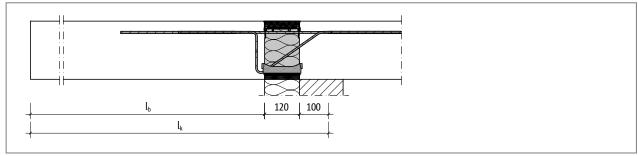


Fig. 9: Schöck Isokorb[®] XT type K: System cantilever length (l_k) for design and geometric cantilever (l_b)

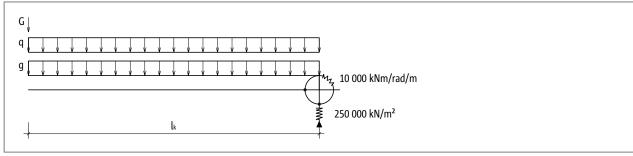


Fig. 10: Schöck Isokorb®: Approximate adoption of the spring stiffness

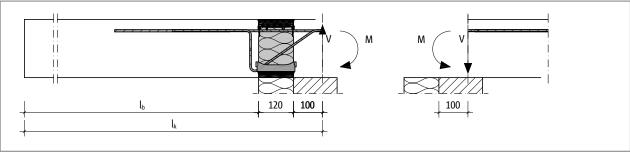


Fig. 11: Schöck Isokorb® XT type K: Determined design stress resultants applied to floor slab

FEM guidelines

Recommended method for the design of Schöck Isokorb® types by means of FEM systems:

- Separate balcony slab from the supporting structure of the building
- Determine internal forces on the balcony slab support taking into account the spring stiffness values (satisfactorily accurate approximation of the Schöck Isokorb® load-bearing behaviour) 10,000 kNm/rad/m (rotation)
 - 250,000 kN/m² (vertical)
- Select Schöck Isokorb[®] type and add the calculated values v_{ed} and m_{ed} as external edge loads to the load-bearing structure of the building.

The stiffnesses in the area of the support of the load-bearing structure (inner slab/wall) are, in the normal case, assumed to be infinitely stiff. Only with very different stiffness relationships of connecting and supporting structural components are the linearly changing moments and shear forces along the edges of the slab to be taken into account.

The achievable internal forces are used for both the design of the Schöck Isokorb[®] as well as for the design of the inner slab and wall construction of the building.

I FEM guidelines

> The Schöck Isokorb[®] can transmit no twisting moments.

Fatigue/Temperature effect

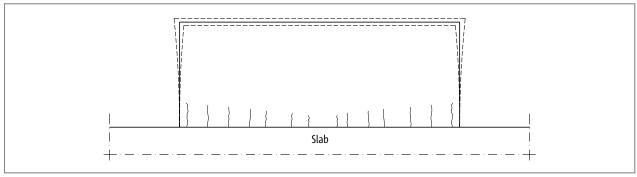


Fig. 12: Balcony slab without Schöck Isokorb®: Crack formation through fatigue possible

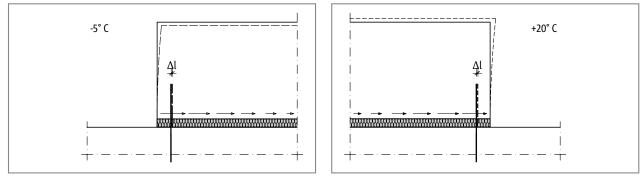


Fig. 13: Schöck Isokorb[®]: Displacement of the outer bars of a balcony slab by ΔI as a result of temperature deformation

Balcony slabs, passageway walks and canopy constructions expand with warming and contract with cooling. With a continuous reinforced concrete slab cracks in the reinforced concrete slab can result at this point through which moisture can penetrate. The Schöck Isokorb[®] defines a joint which with correct execution prevents cracks in the concrete.

The tension bars, the shear force bars and the HTE-Compact[®] pressure bearings in the Schöck Isokorb[®] are consistently deflected transverse to their axis through thermal stressing. Therefore a verification of the fatigue safety is to be carried out for the Schöck Isokorb[®]. This verification of the fatigue safety is provided through the observation of the respective expansion joint spacings 'e' for the Schöck Isokorb[®] type (as per approval document). Thus material fatigue and the failure of the structural component over the planned useful life is excluded.

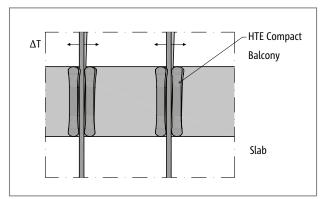
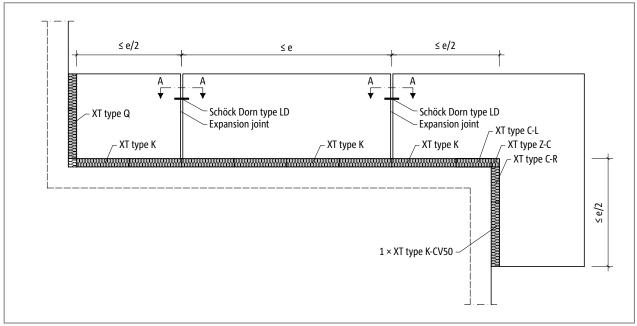
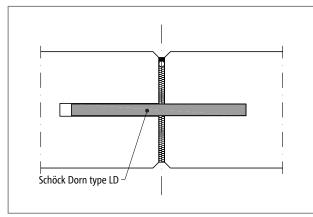



Fig. 14: Schöck Isokorb® detail: deflection of the pressure bearing as a result of temperature difference

The HTE-Compact[®] pressure bearing compensates the movement of the structural component through individual inclination of each individual compression element. The bars are deflected only in the fatigue safe area.



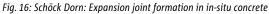

Fatigue | Expansion joint spacing

Fig. 15: Schöck Isokorb® XT type K: Expansion joint spacing longitudinally displaceable shear force dowel, e. g. Schöck dowel

The maximum permitted expansion joint spacings e of the Schöck Isokorb[®] types depend on the bar diameter and type of construction of the chosen Schöck Isokorb[®] types. For the respective Schöck Isokorb[®] type, the maximum expansion joint spacings are provided in the Product chapter.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

Fig. 17: Schöck Dorn: Expansion joint formation precast concrete balcony

Schöck Dorn type LD

Grouting pocket

Expansion joints

> Details for the formation of expansion joints see also: Technical Information Schöck Dorn application examples.

Indicative minimum concrete strength classes

In addition, the indicative minimum concrete strength classes of exposure classes XF1, and XF3 are to be noted. The higher minimum concrete strength class is relevant.

In addition, the indicative minimum concrete strength classes of exposure classes XF1, and XF3 are to be noted.

Indicative minimum concrete strength classes (extract from BS EN 1992-1-1 Table 4.1 and BS 8500-1:2006)

Exposure class	Indicative	Indicative minimum concrete strength classes				
BS EN 1992-1-1 Table 4.1	BS 8500-1:2006	Approval internal component	Approval external component	Schöck Isokorb®		
XC1	C20/25			30		
XC3/4	C40/50			35 (Δc = 5 mm)		
XC3/4	C30/37	C25/20	(22/40	50		
XD1	C25/30	C25/30	C32/40	50		
XS1	C45/55			50 (Δc = 5 mm)		
XF1, XF3	acc. to BS EN 206-1			-		

Concrete cover

• Due to suitable quality measures with the Schöck Isokorb[®] manufacture, Δc_{dev} (BS EN 1992-1-1/NA, NDP to 4.4.1.3(3)) may be reduced by 5 mm with the determination of the concrete cover CV.

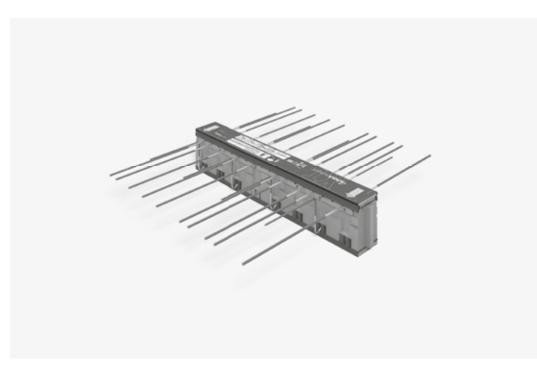
- XT types K, C: CV35 and CV50 are the concrete cover of the tension bars
- > XT type D: CV35 is the concrete cover of the top lying tension bars. The lower tension bars in both cases have 30 mm concrete cover.

CV50 is the cover of the top and bottom lying tension bars.

- > XT types Q, Q-VV, Q-Z: Concrete cover balcony side at the bottom at least 30 mm (as a rule less exposed than the balcony top surface).
- XT types Q-P, Q-P-VV, Q-PZ: Concrete cover balcony side at the bottom at least 40 mm (as a rile less exposed than the balcony top surface).
- With special requirements on the concrete cover further product variants can be requested from Schöck Technical Design Department.

Construction materials

Schöck Isokorb® construction materials


Reinforcing steel	BS4449
Structural steel	S 235 JRG1, S 235 JO, S 235 J2, S 355 JR, S 355 J2, or S 355 JO according to BS EN 10025-2 for the pressure slabs
Stainless steel	Ribbed round steel B500B NR, Material No. 1.4571 or 1.4482 according to Approval document Z-15.7-240 Tension bars Material No. 1.4482 f _{yk} = 600 N/mm ²) Plain steel bars, Material No. 1.4571 or 1.4404 of hardening level S 460
Concrete pressure bearings	HTE-Compact® pressure bearings (pressure bearings made from micro-steel fibre-reinforced high performance fine concrete) HDPE plastic sheathing
Insulating material	Neopor [®] - this polystyrene hard foam is a registered trademark of BASF, λ = 0.031 W/(m·K), build- ing material classification B1 (flame retardant)
Fire protection material	Light building panels of building material class A1, cement-bonded fire protection panels, mineral wool: $\rho \ge 150 \text{ kg/m}^3$, melting point T $\ge 1000 \text{ °C}$ and integrated fire protection tape
Connected components	
Reinforced concrete	B500A or B500B according to DIN 488-1, resp. BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA
Concrete	Standard concrete according to DIN 1045-2 resp. BS EN 206-1 with a dry density of 2000 kg/m³ to 2600 kg/m³ (lightweight concrete is not permitted)
	Indicative minimum strength class of the outer structural components : At least C25/30 and depending on the environmental classes according to BS EN 1992-1-1/NA, Ta- ble NA.E.1
	Indicative concrete strength class of the internal structural components: At least C20/25 and depending on the environmental classes according to BS EN 1992-1-1/NA, Ta- ble NA.E.1

Information on the bending of reinforcing steel

With the production of the Schöck Isokorb[®] in the factory it is ensured through monitoring that the conditions of the general building supervisory approval document and of BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA with regard to bending of reinforcing steel are oberved.

Attention: Attention: If reinforcing steel of the Schöck Isokorb[®] is bent or bent and bent back on-site, the observation and the monitoring of the respective conditions (European Technical Assessment (ETA, BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA) lie outside the influence of Schöck Bauteile GmbH. Therefore, in such cases, the warranty is invalidated.

Schöck Isokorb® XT type K

Schöck Isokorb® XT type K

Suitable for cantilever balconies. It transfers negative moments and positive shear forces. The Schöck Isokorb® XT type K with the secondary load-bearing level VV transmits negative moments, positive and negative shear forces.

Element arrangement | Installation cross sections

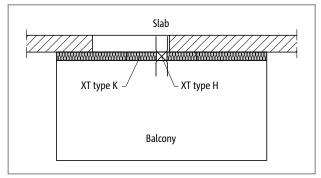


Fig. 18: Schöck Isokorb[®] XT type K: Balcony freely cantilevered; optional with XT type H (from page 125) with planned horizontal loads (e. g. closed ballustrades)

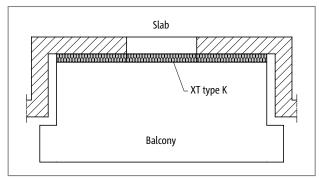
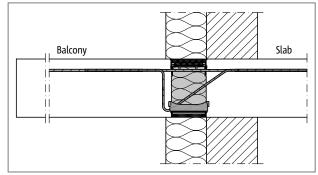



Fig. 20: Schöck Isokorb® XT type K: Balcony with facade recess

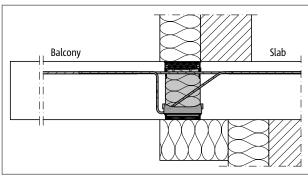


Fig. 24: Schöck Isokorb® XT type K: Connection for indirectlypositioned floor and TICS

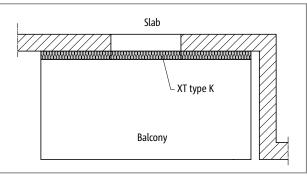


Fig. 19: Schöck Isokorb® XT type K: Balcony with facade offset

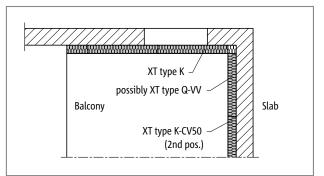


Fig. 21: Schöck Isokorb® XT type K, Q-VV: balcony with inner corner, supported two-sided

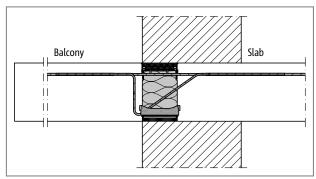


Fig. 23: Schöck Isokorb® XT type K: Connection with single-leaf masonry

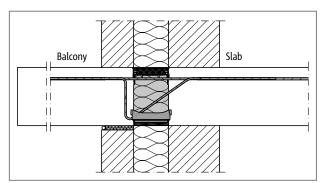
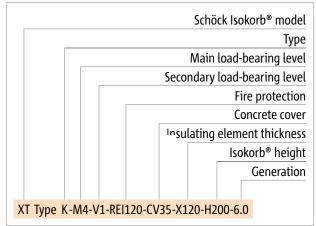


Fig. 25: Schöck Isokorb $^{\otimes}$ XT type K: Cavity wall with a balcony at inner slab level

XT ype K

Product selection | Type designations | Special designs


Schöck Isokorb® XT type K variants

The configuration of the Schöck Isokorb® XT type K can vary as follows:

- Main load-bearing level:
- M1 to M10
- Secondary load-bearing level: V1 to V2, VV1
- Fire resistance class: REI120 (standard)
- Concrete cover of the tension bars: CV35 = 35 mm, CV50 = 50 mm
- Insulating element thickness: X120 = 120 mm
- Isokorb® Height:
 - H = 160 250 mm for Schöck Isokorb[®] XT type K and concrete cover CV35
 - H = 180 250 mm for Schöck Isokorb $^{\circ}$ XT type K and concrete cover CV50
- Generation:

6.0

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

In accordance with approval heights up to 500 mm are possible.

This also applies with additional requirements as a result of precast concrete construction. For additional requirements determined by manufacturing or transportation there are solutions available with coupler bars.

C25/30 design

Schöck Is	sokorb® XT ty	pe K	M1	M2	M3	M4	M5	M6
Design values	Concrete cover CV [mm]		Concrete strength class ≥ C25/30					
with CV35 CV50					m _{Rd,y} [k	(Nm/m]		
	160		-8.9	-15.0	-20.8	-23.8	-25.5	-29.3
		180	-9.5	-16.0	-22.0	-25.2	-27.2	-31.3
	170		-10.0	-16.9	-23.2	-26.5	-28.8	-33.0
		190	-10.7	-17.9	-24.4	-27.9	-30.6	-35.0
	180		-11.2	-18.8	-25.6	-29.2	-32.1	-36.8
		200	-11.8	-19.8	-26.7	-30.6	-33.9	-38.8
	190		-12.3	-20.7	-27.9	-31.9	-35.5	-40.6
		210	-13.0	-21.8	-29.1	-33.3	-37.1	-42.4
Isokorb® height	200		-13.6	-22.7	-30.3	-34.6	-38.7	-44.2
H [mm]		220	-14.3	-23.8	-31.5	-36.0	-40.3	-46.0
	210		-14.8	-24.7	-32.7	-37.3	-41.9	-47.8
		230	-15.5	-25.8	-33.8	-38.7	-43.4	-49.6
	220		-16.0	-26.7	-35.0	-40.0	-45.0	-51.4
		240	-16.8	-27.9	-36.2	-41.4	-46.6	-53.2
	230		-17.3	-28.7	-37.4	-42.7	-48.2	-55.0
		250	-18.1	-29.9	-38.6	-44.1	-49.7	-56.8
	240		-18.6	-30.8	-39.8	-45.4	-51.3	-58.6
	250		-20.0	-33.0	-42.1	-48.1	-54.4	-62.2
					V _{Rd,z} [kN/m]		
Secondary	V1		28.2	28.2	28.2	35.3	35.3	35.3
load-bearing level	V2		50.1	50.1	62.7	62.7	62.7	62.7
-	VV1		-	-	±50.1	±50.1	±50.1	±50.1

Schöck Isokorb® XT type K	M1	M2	M3	M4	M5	M6
Isokorb® length [mm]	1000	1000	1000	1000	1000	1000
Tension bars V1/V2	4 Ø 8	7ø8	10 Ø 8	12 Ø 8	13 Ø 8	15 Ø 8
Tension bars VV1	-	-	12 Ø 8	14 Ø 8	15 Ø 8	8 Ø 12
Shear force bars V1	4 Ø 6	4Ø6	4 Ø 6	5Ø6	5Ø6	5Ø6
Shear force bars V2	4 Ø 8	4 Ø 8	5 Ø 8	5Ø8	5Ø8	5 Ø 8
Shear force bars VV1	-	-	4 Ø 8 + 4 Ø 8	4ø8+4ø8	4ø8+4ø8	4ø8+4ø8
Pressure bearing V1/V2 (piece)	4	6	7	8	7	8
Pressure bearing VV1 (piece)	-	-	8	8	12	13
Special stirrup VV1 (Stk.)	-	-	-	-	-	4

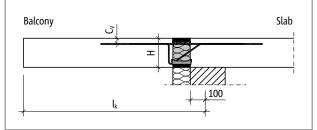


Fig. 26: Schöck Isokorb® XT type K: Static system

C25/30 design

Schöck Is	Schöck Isokorb® XT type K		M7	M8	M9	M10	M10
Design values with		te cover [mm]	Concrete strength class ≥ C25/30				≥ C30/37
with	CV35	CV50					
	160		-33.1	-37.1	-46.4	-46.4	-50.2
		180	-35.4	-39.7	-49.2	-49.2	-53.3
	170		-37.5	-42.0	-52.1	-52.1	-56.3
		190	-39.8	-44.6	-54.9	-54.9	-59.4
	180		-41.8	-46.8	-57.8	-57.8	-62.5
		200	-44.2	-49.2	-60.7	-60.7	-65.6
	190		-46.2	-51.5	-63.5	-63.5	-68.7
		210	-48.6	-53.8	-66.4	-66.4	-71.8
Isokorb® height	200		-50.7	-56.2	-69.3	-69.3	-74.9
H [mm]		220	-53.1	-58.5	-72.1	-72.1	-78.0
	210		-55.2	-60.8	-75.0	-75.0	-81.1
		230	-57.7	-63.1	-77.8	-77.8	-84.2
	220		-59.8	-65.4	-80.7	-80.7	-87.3
		240	-62.1	-67.8	-83.6	-83.6	-90.4
	230		-64.2	-70.1	-86.4	-86.4	-93.5
		250	-66.4	-72.4	-89.3	-89.3	-96.6
	240		-68.5	-74.7	-92.2	-92.2	-99.7
	250		-72.8	-79.4	-97.9	-97.9	-105.9
				V _{Rd,z} [I	kN/m]		
Secondary	V1		75.2	87.8	112.8	112.8	112.8
load-bearing level	V2		100.3	112.8	125.4	125.4	125.4
	VV1		75.2/-50.1	87.8/-50.1	-	-	

Schöck Isokorb® XT type K	M7	M8	M9	M10	M10
Isokorb® length [mm]	1000	1000	1000	1000	1000
Tension bars V1/V2	8 Ø 12	9 Ø 12	12 Ø 12	13 Ø 12	13 Ø 12
Tension bars VV1	9 Ø 12	11 Ø 12	-	-	-
Shear force bars V1	6 Ø 8	7 Ø 8	9 Ø 8	9 Ø 8	9 Ø 8
Shear force bars V2	8 Ø 8	9 Ø 8	10 Ø 8	10 Ø 8	10 Ø 8
Shear force bars VV1	6 Ø 8 + 4 Ø 8	7ø8+4ø8	-	-	-
Pressure bearing V1/V2 (piece)	11	12	18	18	18
Pressure bearing VV1 (piece)	15	17	-	-	-
Special stirrup (piece)	4	4	4	4	4

Notes on design

- The shear force loading of the slabs in the area of the insulation joint is to be limited to $V_{Rd, max}$, whereby $V_{Rd, max}$, acc. to BS EN 1992-1-1 (EC2), Exp. (6.9) is determined for θ = 45 ° and α = 90 ° (slab load-bearing capacity).
- With CV50, H = 180 mm is the lowest Isokorb[®] height, this requires a minimum slab thickness of h = 180 mm.
- For cantilever slab constructions without live load, stressed from moment loading without direct shear force effectiveness or lightweight constructions, please use the Schöck design software or contact our Technical Design Department.
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.
- Note FEM guidelines if a FEM program is to be used for design.

Deflection/Camber

Deflection

The deflection factors given in the table (tan α [%]) result alone from the deflection of the Schöck Isokorb[®] under 100% steel utilisation. They serve for the estimation of the required camber. The total arithmetic camber of the balcony slab formwork results from the calculation according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA plus the deflection from Schöck Isokorb[®]. The camber of the balcony slab formwork to be given by the structural engineer/designer in the implementation plans (Basis: Calculated total deflection from cantilever slab + floor rotation angle + Schöck Isokorb[®]) should be so rounded that the scheduled drainage direction is maintained (round up: with drainage to the building facade, round down: with drainage towards the cantilever slab end).

Deflection (p) as a result of Schöck Isokorb®

Deficection (p) as a result of	Schock ISOK	
	р	= tan $\alpha \cdot l_k \cdot (m_{pd} / m_{Rd}) \cdot 10 \text{ [mm]}$
Factors to be applied		
	tan α	= apply value from table
	l _k	= cantilever length [m]
	m _{pd}	= relevant bending moment [kNm/m] in the ultimate limit state for the determination of the p [mm] from Schöck Isokorb [®] .
		The load combination to be applied for the deflection is determined by the structural engineer.
		(Recommendation: Load combination for the determination of the camber p : determine g+q/2, m _{pd} in the ultimate limit state)
	m _{Rd}	= maximum design moment [kNm/m] of the Schöck Isokorb®

Calculation example see page 39

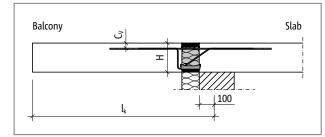


Fig. 27: Schöck Isokorb® XT type K: Static system

Schöck Isokor	b® XT type K	M1 - I	M6	M7 -	M10		
Deflection factors when		tan α	[%]	tan	tan α [%]		
Deflection to	actors when	CV35	CV50	CV35	CV50		
	160	1.1	-	1.4	-		
	170	1.0	-	1.2	-		
-	180	0.9	1.1	1.1	1.3		
	190	0.9	1.0	1.0	1.2		
Isokorb®	200	0.8	0.9	0.9	1.0		
height H [mm]	210	0.7	0.8	0.9	1.0		
[]	220	0.7	0.8	0.8	0.9		
	230	0.6	0.7	0.7	0.8		
	240	0.6	0.7	0.7	0.8		
-	250	0.6	0.6	0.7	0.7		

Slenderness

Slenderness

In order to safeguard the serviceability limit state we recommend the limitation of the slenderness to the following maximum cantilever lengths max l_k [m]:

Schöck Isokor	b® XT type K	M1 -	M10		
maximum cantilever		l _{k,max} [m]			
length	n with	CV35	CV50		
	160	1.65	-		
	170	1.78	-		
	180	1.90	1.70		
	190	2.03	1.80		
lsokorb®	200	2.15	1.90		
height H [mm]	210	2.28	2.00		
[]	220	2.40	2.10		
,	230	2.53	2.20		
	240	2.65	2.30		
,	250	2.78	2.40		

Maximum cantilever length

The tabular values are based on the following assumptions:

- Accessible balcony
- Specific weight of concrete γ =25 kN/m³
- ▶ Dead weight of the balcony surfacing $g_2 \le 1.2 \text{ kN/m}^2$
- Balcony rail $g_{R} \leq 0.75 \text{ kN/m}$
- Service load q = 4.0 kN/m² with the coefficient $\psi_{2,i}$ = 0.3 for the quasi-permanent combination

🚺 Maximum cantilever length

The maximum cantilever length for ensuring the serviceability limit state is a benchmark. It can be limited with the employment of the Schöck Isokorb® XT type K through the load-bearing capacity.

Expansion joint spacing

Maximum expansion joint spacing

If the length of the structural component length exceeds the maximum expansion joint spacing e, then the expansion joints must be integrated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. With fixed points such as, for example, balcony corners or with the employment of the Schöck Isokorb[®] XT types H, half the maximum expansion joint spacing e/2 applies.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

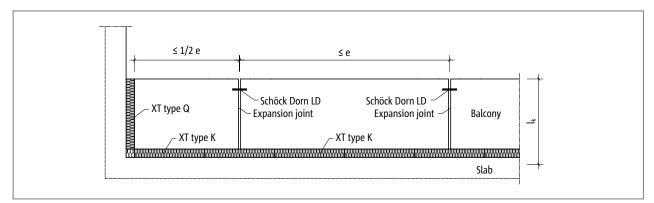


Fig. 28: Schöck Isokorb® XT type K: Expansion joint arrangement

Schöck Isokorb® XT type K		M1 - M6-V1, V2	M6-VV1 - M10
Maximum expansion joint spacing		e [m]	
Insulating element thickness [mm]	120	23.0	21.7

Edge distances

The Schöck Isokorb[®] must be so arranged at the expansion joint that the following conditions are met:

- For the centre distance of the tension bars from the free edge or from the expansion joint: $e_R \ge 50$ mm and $e_R \le 150$ mm applies.
- For the centre distance of the compression elements from the free edge or from the expansion joint: $e_R \ge 50$ mm applies.
- For the centre distance of the shear force bars from the free edge or from the expansion joint: $e_R \ge 100$ mm and $e_R \le 150$ mm applies.

Product description

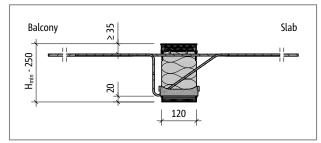


Fig. 29: Schöck Isokorb® XT type K-M1 to M4: Product section

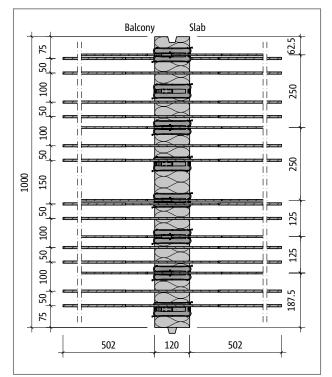


Fig. 31: Schöck Isokorb® XT type K-M4: Product plan view

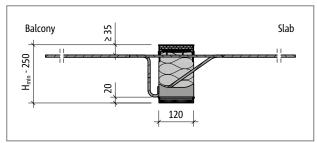


Fig. 30: Schöck Isokorb® XT type K-M5, M6: Product section

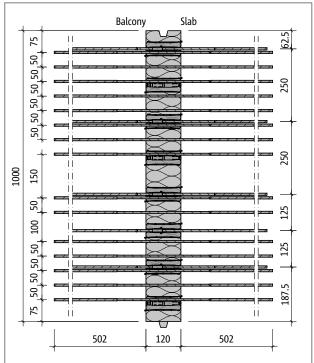


Fig. 32: Schöck Isokorb[®] XT type K-M6: Product plan view

Product information

- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Minimum height Schöck Isokorb® XT type K with CV50: H_{min} = 180 mm
- On-site spacing of the Schöck Isokorb[®] XT type K at the unreinforced positions possible; due to spacing take into account reduced load-bearing capacity; take into account required edge separations
- Concrete cover of the tension bars: CV35 = 35 mm, CV50 = 50 mm

XT type K

Product description

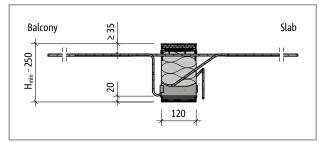
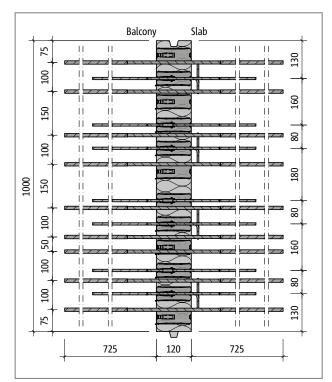
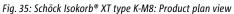




Fig. 33: Schöck Isokorb® XT type K-M7 to M10: Product section

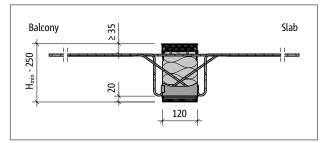


Fig. 34: Schöck Isokorb® XT type K-M5-VV1: Product section

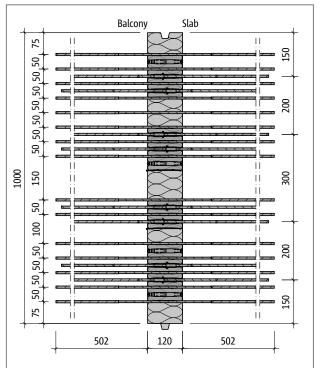


Fig. 36: Schöck Isokorb® XT type K-M5-VV1: Product plan view

Product information

- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Minimum height Schöck Isokorb[®] XT type K with CV50: H_{min} = 180 mm
- On-site spacing of the Schöck Isokorb® XT type K at the unreinforced positions possible; due to spacing take into account reduced load-bearing capacity; take into account required edge separations
- Concrete cover of the tension bars: CV35 = 35 mm, CV50 = 50 mm

XT type K

On-site reinforcement

Direct support

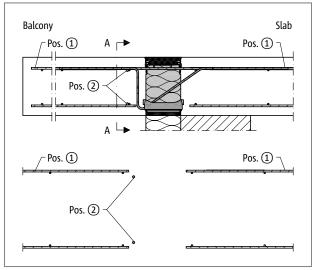


Fig. 37: Schöck Isokorb® XT type K: on-site reinforcement with direct support

Indirect support

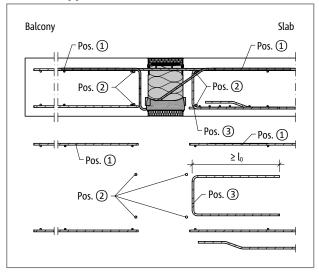
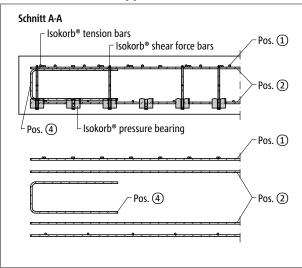



Fig. 38: Schöck Isokorb® XT type K: On-site reinforcement with indirect support

Direct and indirect support

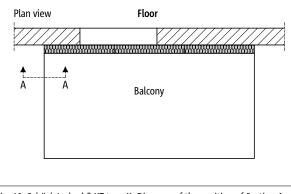


Fig. 40: Schöck Isokorb® XT type K: Diagram of the position of Section A - A

Fig. 39: Schöck Isokorb® XT type K: On-site reinforcement balcony side in section A-A; Pos. 4 = side reinforcement on the free edge perpendicular to the Schock Isokorb

The reinforcement in the reinforced concrete slab is determined from the structural engineer's design. With this both the effective moment and the effective shear force should be taken into account.

In addition, it is to be ensured that the tension bars of the Schöck Isokorb[®] are 100% lapped. The existing inner slab reinforcement can be taken into account as long as the maximum separation to the tension bars of the Schöck Isokorb[®] of 4Ø is maintained. Additional reinforcement may be required.

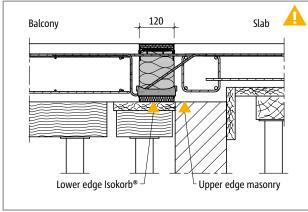
On-site reinforcement

Recommendation for on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; variants adapted to load-bearing level. The required reinforcement cross-section depends on the bar diameter of the steel bar or wire mesh reinforcement.

Schöck Isokorb® XT type K			M1		M2		M3			M4		
On-site reinforcement	Secondary load-bearing level		V1	V2	V1	V2	V1	V2	VV1	V1	V2	VV1
	Type of bearing	Height [mm]	Floor (XC1) concrete strength class ≥ C25/30 Balcony (XC4) concrete strength class ≥ C25/30									
Pos. 1 overlap reinforcement depending on bar diameter												
Pos. 1 with Ø8 [mm²/m]	direct/indirect	160 - 250	289	258	457	426	575	544	603	661	622	689
Pos. 1 with Ø10 [mm²/m]			352	317	553	518	695	662	722	798	755	825
Pos. 1 with Ø12 [mm²/m]			422	381	664	622	834	794	866	958	906	990
Pos. 2 Steel bars along the insulation joint												
Pos. 2	direct	160 - 250	2 • H8									
	indirect	160 - 250	4 Ø 8									
Pos. 3 vertical reinforcement												
Pos. 3 [mm²/m]	indirect	160 - 250	113		113		113		-	113		-
Pos. 4 supplementary edge reinforcement												
Pos. 4	direct/indirect	160 - 250	according to BS EN 1992-1-1 (EC2), 9.3.1.4									

Schöck Isok		M5			M7						
On-site reinforcement	Secondary load-bearing level		V1	V2	VV1	V1	V2	VV1	V1	V2	VV1
	Type of bearing	Height [mm]	Floor (XC1) concrete strength class ≥ C25/30 Balcony (XC4) concrete strength class ≥ C25/30								
Pos. 1 overlap reinforcement depending on bar diameter											
Pos. 1 with Ø8 [mm²/m]	direct/indirect	160 - 250	762	724	754	866	827	880	979	979	990
Pos. 1 with Ø10 [mm²/m]			920	877	902	1044	1001	880	1040	1061	990
Pos. 1 with Ø12 [mm²/m]			1104	1052	1082	1253	1201	880	1102	1143	990
Pos. 2 Steel bars along the insulation joint											
Pos. 2	direct	160 - 250	2 • H8								
	indirect	160 - 250	4 Ø 8								
Pos. 3 vertical reinforcement											
Pos. 3 [mm²/m]	indirect	160 - 250	113		-	125		-	113		-
Pos. 4 supplementary edge reinforcement											
Pos. 4	direct/indirect	160 - 250	according to BS EN 1992-1-1 (EC2), 9.3.1.4								


Schöck Isokorb® XT type K				M8		N	M9		M10	
On-site reinforcement	Secondary load-bearing level		V1	V2	VV1	V1	V2	V1	V2	
	Type of bearing	Height [mm]				crete strength class ≥ C25/30 ncrete strength class ≥ C25/30				
Pos. 1 overlap reinforce	Pos. 1 overlap reinforcement depending on bar diameter									
Pos. 1 with Ø10 [mm²/m]	direct/indirect	160 250	1140	1160	1210	1409	1419	1517	1527	
Pos. 1 with Ø12 [mm²/m]		100 - 250	1212	1253	1210	1502	1522	1609	1630	
Pos. 2 Steel bars along	the insulation jo	int								
Dec 2	direct	160 - 250				2 • H8				
Pos. 2	indirect	160 - 250				4 Ø 8				
Pos. 3 vertical reinforce	ement									
Pos. 3 [mm²/m]	indirect	160 - 250	113 - 113		11	.3				
Pos. 4 supplementary e	Pos. 4 supplementary edge reinforcement									
Pos. 4	direct/indirect	160 - 250	according to BS EN 1992-1-1 (EC2), 9.3.1.4							

Information about on-site reinforcement

- When reinforcing with different diameters the reinforcement specification for the largest diameter is relevant.
- The mixing of steel bar and wire mesh reinforcement is possible. The corresponding mesh reinforcement can be taken into account when determining the additional reinforcement.
- Alternative connection reinforcements are possible. Determine lap length according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA. A reduction of the required lap length with m_{Ed}/m_{Rd} is permitted. For the overlap (l₀) with the Schöck Isokorb® XT using types K-M1 to M6-V2 a length of the tension bars 465 mm and with types K-M6-VV1 to M10 a length of the tension bars of 695 mm can be invoiced.
- ▶ The reinforcement at the free edges Pos. 4 of the structural component perpendicular to the Schöck Isokorb[®] should be selected as low as possible so that it can be arranged between the upper and lower reinforcement layer.

Tight fit/Concreting section | Precast/Compression joints

Tight fit/Concreting section

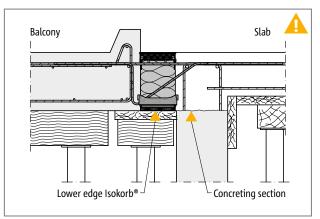
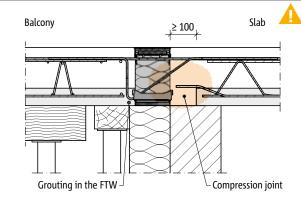


Fig. 41: Schöck Isokorb® XT type K: In-situ concrete balcony with height offset floor on masonry wall


Fig. 42: Schöck Isokorb® XT type K: Fully finished balcony with height offset floor on precast reinforced concrete wall

A Hazard note: Tight fit with different height levels

The tight fit of the pressure bearings to the freshly poured concrete is to be ensured, therefore the upper edge of the masonry respectively of the concreting section is to be arranged below the lower edge of the Schöck Isokorb®. This is to be taken into account above all with a different height level between inner slab and balcony.

- The concreting joint and the upper edge of the masonry are to be arranged below the lower edge of the Schöck Isokorb[®].
- The position of the concreting section is to be indicated in the formwork and reinforcement drawing.
- The joint planning is to be coordinated between precast concrete plant and construction site.

Precast/Compression joints

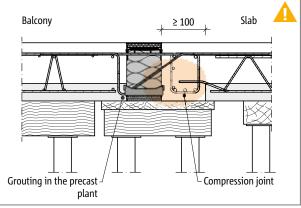
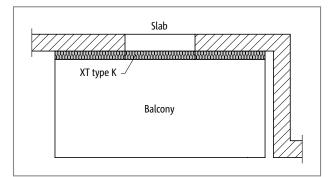


Fig. 43: Schöck Isokorb® XT type K: Direct support, installation in conjunction with element slabs (here: $h \le 180$ mm), compression joint on floor side


Fig. 44: Schöck Isokorb® XT type K: Indirect support, installation in conjunction with element slabs (here: $h \le 180 \text{ mm}$), compression joint on floor side

A Hazard note: Compression joints

Compression joints are joints which, with unfavourable loading combination, remain always in compression. The underside of a cantilever balcony is always a compression zone. If the cantilever balcony is a precast part or an element slab, and/or the floor is an element slab, then the definition of the standard is effective.

- Compression joints are to be indicated in the formwork and reinforcement drawing!
- Compression joints between precast parts are always to be grouted using in-situ concrete. This also applies for compression joints with the Schöck Isokorb[®]!
- With compression joints between precast parts (on the inner slab or balcony side) and the Schöck Isokorb® an in-situ concrete resp. pour of \geq 100 mm width is to be cast. This is to be entered in the working drawings.
- We recommend the installation of the Schöck Isokorb® and the pouring of the balcony-side compression joint already in the precast concrete plant.

Design example

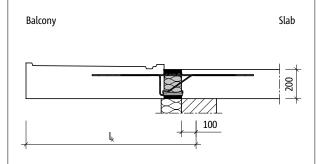


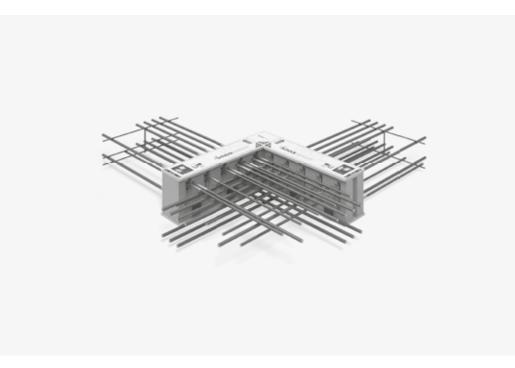
Fig. 46: Schöck Isokorb® XT type K: Static system

Fig. 45: Schöck Isokorb® XT type K: Plan view

Charles and an and hards		
Static system and load a	-	
Geometry:	Cantilever length	l _k = 2.12 m
	Balcony slab thickness	h = 200 mm
Design loads:	Balcony slab and coating	$g = 6.5 \text{ kN/m}^2$
	Live load	$q = 4.0 \text{ kN/m}^2$
	Edge load (parapet)	g _R = 1.5 kN/m
Exposure classes:	Outer XC 4	
	Inner XC 1	
Selected:	Concrete quality C25/30 for b	alcony and floor
	Concrete cover c _{nom} = 35 mm	for Isokorb [®] -tension bars
	(reduction Δc_{def} by 5mm, in (connection with quality measures Isokorb [®] production)
Connection geometry:	No height offset, no floor edd	ge downstand beam, no balcony upstand
Floor supported:	Floor edge directly supported	1
Balcony support:	Constraining of the cantileve	r slab using XT type K
Recommendation on slo	enderness	
Geometry:	Cantilever length	l _k = 2.12 m
	Balcony slab thickness	h = 200 mm
	Concrete cover	CV35
	Maximum cantilever length	$l_{k,max}$ = 2.15 m (from table, see page 31) > l_k
Verification in the ultin	nate limit state (moment a	nd shear force)
Internal forces:	$m_{Ed} = -[(\gamma_G \cdot g + \gamma_Q \cdot q)]$	$(\cdot l_k^2/2 + \gamma_G \cdot g_R \cdot l_k)$
	$m_{Ed} = -[(1.35 \cdot 6.5 + 1)]$.5 · 4) · 2.12²/2 + 1.35 · 1.5 · 2.12] = –37.5 kNm/m
	$v_{Ed} = +(\gamma_G \cdot g + \gamma_Q \cdot q)$	$\cdot l_k + \gamma_G \cdot g_R$
	$v_{Ed} = +(1.35 \cdot 6.5 + 1.5)$	5 · 4.0) · 2.12 + 1.35 · 1.5 = +33.3 kN/m
Selected:	Schöck Isokorb® XT type K-M	I5-V1-REI120-CV35-X120-H200
		see page 28) > m_{Ed}
	v_{Rd} = +35.3 kN/m (see	

Reinforced concrete – reinforced concrete

Design example


Serviceability limit state (deflection/precamber)

Deformation factor	$\tan \alpha$	= 0.8 (from table, see page 30)
selected load combination:	g + q/2	
	(recomme	ndation for the determination of the camber from Schöck Isokorb [®])
	m _{üd} deterr	mine the load-bearing capability in the serviceability limit state
	m _{üd}	$= -[(\gamma_{G} \cdot g + \gamma_{Q} \cdot q/2) \cdot l_{k}^{2}/2 + \gamma_{G} \cdot g_{R} \cdot l_{k}]$
	m _{üd}	$= -[(1.35 \cdot 6.5 + 1.5 \cdot 4.0/2) \cdot 2.12^2/2 + 1.35 \cdot 1.5 \cdot 2.12] = -30.8 \text{ kNm/m}$
	Wü	= [tan $\alpha \cdot l_k \cdot (m_{ud} / m_{Rd})] \cdot 10$ [mm]
	Wü	= [0.8 · 2.12 · (-30.8/-38.7)] · 10 = 13.5 mm
Arrangement of the expansio	n joints	balcony length : 4.00 m < 23.00 m
	=> no exp	ansion joints required

🗹 Check list

- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- Has the additional proportionate deflection resulting from the Schöck Isokorb® been taken into account?
- □ Is the drainage direction taken into account with the resulting camber information? Is the degree of camber entered in the working drawings?
- □ Is the increased minimum slab thickness taken into account with CV50?
- Are the recommendations for the limitation of the slenderness observed?
- Are the maximum allowable expansion joint spacings taken into account?
- Are the Schöck FEM guidelines taken into account with the calculation using FEM?
- With the selection of the design table is the relevant concrete cover taken into account?
- Have existing horizontal loads e.g. from wind pressure, been taken into account as planned? Are additional Schöck Isokorb® XT type H required for this?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Have the required in-situ concrete strips for the respective Schöck Isokorb[®] type, in conjunction with inner slab elements been charted in the implementation plans?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- With precast balconies are possibly necessary gaps for the front side transportation anchors and downpipes with internal drainage taken into account? Is the maximum centre distance of 300 mm for the Isokorb[®] bars observed?
- Is the XT type K-U, K-O (from page 61) or a special design required instead of a Schöck Isokorb[®] XT type K due to connection with height offset or to a wall?

Schöck Isokorb® XT type C

Schöck Isokorb® XT type C Suitable for cantilevered corner balconies. It transfers negative moments and positive shear forces.

Element arrangement

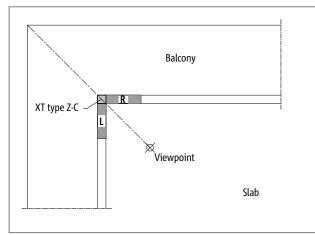


Fig. 47: Schöck Isokorb® XT type C: Arrangement XT type C-L left from viewpoint, arrangement XT type C-R right from viewpoint

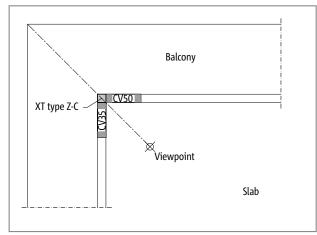


Fig. 49: Schöck Isokorb[®] XT type C: Concrete cover selectable: Here CV35 left from viewpoint, concrete cover CV50 right from viewpoint

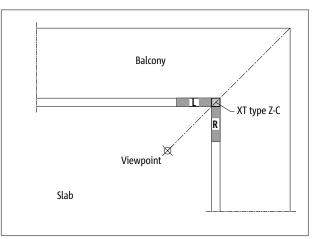


Fig. 48: Schöck Isokorb® XT type C: Arrangement XT type C-L left from viewpoint, arrangement XT type C-R right from viewpoint

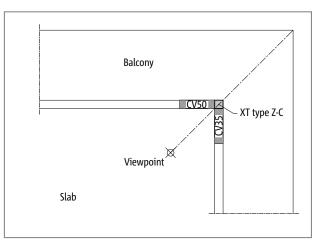


Fig. 50: Schöck Isokorb® XT type C: Concrete cover selectable: Here CV50 left from viewpoint, concrete cover CV35 right from viewpoint

XT type C

Element arrangement

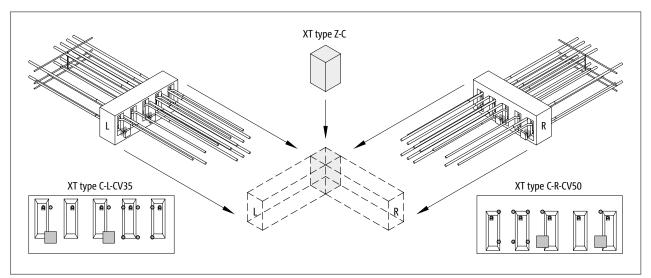


Fig. 51: Schöck Isokorb® XT type C-L-CV35, XT type C-R-CV50: Arrangement at the corner using corner insulating element

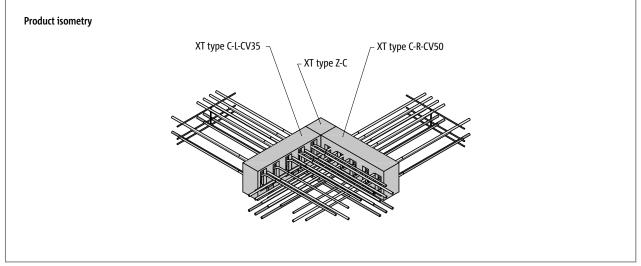


Fig. 52: change representation to illustration Schöck Isokorb® XT type C-L-CV35, XT type C-R-CV50: Isometric representation

XT type C

Element arrangement

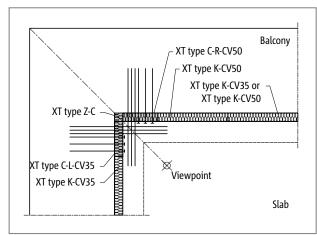


Fig. 53: Schöck Isokorb® XT type C: Balcony with outer corner freely cantilevered (application XT type C-L-CV35, XT type C-R-CV50)

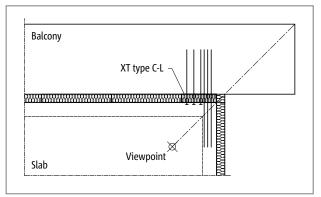


Fig. 55: Schöck Isokorb® XT type C: Balcony projecting over corner of building (application XT type C-L)

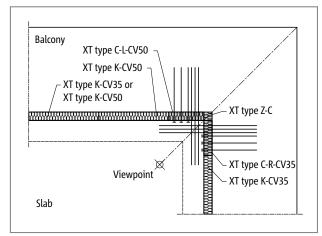
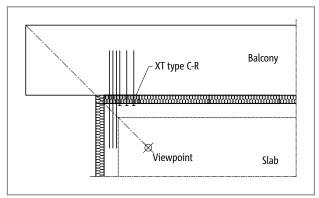
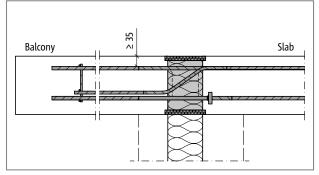


Fig. 54: Schöck Isokorb[®] XT type C: Balcony with outer corner freely cantilevered (applicationf XT type C-L-CV50, XT type C-R-CV35)




Fig. 56: Schöck Isokorb® XT type C: Balcony projecting over corner of building (application XT type C-R)

Element arrangement

- ▶ The Schöck Isokorb[®] XT type C, with small lengths can also be replaced by Schöck Isokorb[®] XT type K.
- ▶ The corner insulating element (XT type Z-C) is supplied with each Schöck Isokorb® XT type C. The corner insulating element can be ordered separately for use with small cantilever lengths in combination with the Schöck Isokorb® XT type K.
- A Schöck Isokorb® XT type K-CV50 is required in the connection to the Schöck Isokorb® XT type C-CV50. Accordingly both a Schöck Isokorb® XT type K-CV35 or XT type K-CV50 can be positioned. The reinforcement arrangement of the outer corner balcony can be simplified through the selection of a Schöck Isokorb® XT type K-CV50.

XT /pe C

Installation cross sections

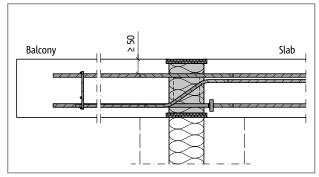
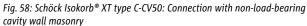



Fig. 57: Schöck Isokorb® XT type C-CV35: Connection with non-load-bearing cavity wall masonry

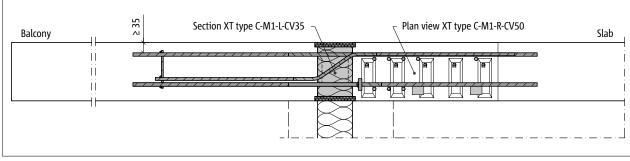


Fig. 59: Schöck Isokorb® XT type C: Outer corner with non-load-bearing cavity wall masonry (section XT type C-L-CV35; view XT type C-R-CV50)

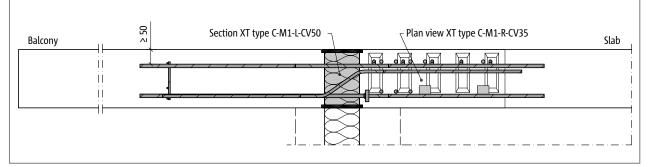
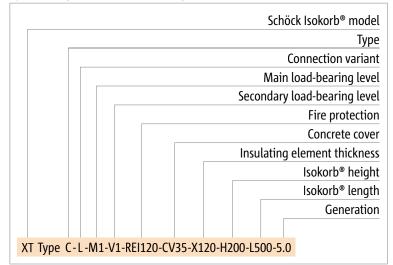


Fig. 60: Schöck Isokorb® XT type C: Outer corner with non-load-bearing cavity wall masonry (view XT type C-L-CV50; section XT type C-R-CV35)

Product selection | Type designations | Special designs


Schöck Isokorb® XT type C variants

An outer corner balcony is made using a Schöck Isokorb[®] XT type C-L, an XT type C-R and an XT type Z-C. The corner insulating element (XT type Z-C) is supplied with each Schöck Isokorb[®] XT type C.

The configuration of the Schöck Isokorb® XT type C can vary as follows:

- Connection variants:
 - L: Left from the viewpoint on the floor
- R: Right from the viewpoint on the floor
- Main load-bearing level: M1 and M2
- Secondary load-bearing level: V1 and V2
- Fire resistance class:
- REI120 (Standard): Projection upper + lower fire protection board, 10 mm on both sides
- Concrete cover of the tension bars: CV35 = 35 mm, CV50 = 50 mm
- Insulating element thickness:
- X120 = 120 mm
- Isokorb® height:
 - H = 180 250 mm for secondary level V1
 - H = 200 250 mm for secondary level V2
- Isokorb[®] length: L = 500 mm
- Possible combination of arrangements of the Schöck Isokorb[®] XT type C and concrete cover of the tension bars CV: XT type C-L-CV35 with XT type C-R-CV50 and XT type Z-C
 - XT type C-L-CV50 with XT type C-R-CV35 and XT type Z-C
- Generation:
 - 5.0

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

In accordance with approval heights up to 500 mm are possible.

TI Schöck Isokorb® XT for reinforced concrete structures/GB/2020.1/November

C25/30 design

Schöck Is	okorb® XT type C	L-M1, R-M1	L-M2, R-M2				
Design values with	Concrete cover CV [mm]	Concrete strength class ≥ C25/30					
with	CV35/CV50	M _{rd.y} [kNm/element]					
	180	-18.2	-23.4				
	190	-20.4	-26.2				
	200	-22.6	-29.0				
Isokorb® height	210	-24.7	-31.8				
H [mm]	220	-26.9	-34.7				
	230	-29.1	-37.5				
	240	-31.3	-40.3				
	250	-33.5	-43.1				
	V _{Rd,z} [kN/element]						
Secondary	V1	97.9	97.9				
load-bearing level	V2	141.0	141.0				

Schöck Isokorb® XT type C	L-M1, R-M1	L-M2, R-M2
Isokorb® length [mm]	500	500
Tension bars	5 Ø 12	5 Ø 12
Compression bars	3 Ø 12	3 Ø 12
Pressure bearing bars	2 Ø 12	3 Ø 14
Shear force bars V1	5 Ø 10	5 Ø 10
Shear force bars V2	5 Ø 12	5 Ø 12
H _{min} with V2 [mm]	200	200

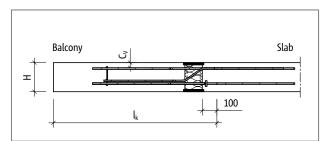


Fig. 61: Schöck Isokorb® XT type C: Static system

Notes on design

- Minimum height Schöck Isokorb® XT type C with V2: H_{min} = 200 mm
- ▶ The Schöck Isokorb[®] XT type C, with small lengths can also be replaced by Schöck Isokorb[®] XT type K.
- The indicative minimum concrete strength class of the external structural component is C32/40.
- Note FEM guidelines if a FEM program is to be used for design.

Deflection/Camber

Deflection

The deflection factors given in the table (tan α [%]) result alone from the deflection of the Schöck Isokorb[®] under 100% steel utilisation. They serve for the estimation of the required camber. The total arithmetic camber of the balcony slab formwork results from the calculation according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA plus the deflection from Schöck Isokorb[®]. The camber of the balcony slab formwork to be given by the structural engineer/designer in the implementation plans (Basis: Calculated total deflection from cantilever slab + floor rotation angle + Schöck Isokorb[®]) should be so rounded that the scheduled drainage direction is maintained (round up: with drainage to the building facade, round down: with drainage towards the cantilever slab end).

Deflection (p) as a result of Schöck Isokorb®

Deneetion (p) as a result of	Schock Bok	
	р	= tan $\alpha \cdot l_k \cdot (m_{pd} / m_{Rd}) \cdot 10 \text{ [mm]}$
Factors to be applied		
	$tan \alpha$	= apply value from table
	l _k	= cantilever length [m]
	m_{pd}	= relevant bending moment [kNm/m] in the ultimate limit state for the determination of the p [mm] from Schöck Isokorb [®] .
		The load combination to be applied for the deflection is determined by the structural engineer.
		(Recommendation: Load combination for the determination of the camber p : deter- mine g+q/2, m_{pd} in the ultimate limit state)
	m _{Rd}	= maximum design moment [kNm/m] of the Schöck Isokorb®

Calculation example see page 39

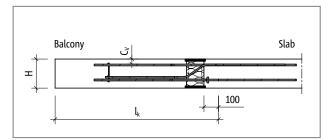


Fig. 62: Schöck Isokorb® XT type C: Static system

Schöck Isokor	b® XT type C	L-M1, R-M1, L-M2, R-M2
Deflection factors when		tan α [%]
		CV35/CV50
	180	1.2
	190	1.1
	200	1.0
lsokorb® height	210	0.9
H [mm]	220	0.8
	230	0.8
240	0.7	
	250	0.7

Slenderness

Slenderness

In order to safeguard the serviceability limit state we recommend the limitation of the slenderness to the following maximum cantilever lengths max l_k [m]:

Schöck Isoko	rb® XT type C	L-M1, R-M1, L-M2, R-M2
maximum cantilever length with		ال _{k,max} [m] CV35/CV50
	180	1.89
	190	2.00
	200	2.12
lsokorb® height	210	2.23
H [mm]	220	2.34
	230	2.50
	240	2.65
	250	2.78

Maximum cantilever length

The tabular values are based on the following assumptions:

- Accessible balcony
- Specific weight of concrete γ=25 kN/m³
- Dead weight of the balcony surfacing $g_2 \le 1.2 \text{ kN/m}^2$
- ▶ Balcony rail $g_{R} \le 0.75 \text{ kN/m}$
- Service load q = 4.0 kN/m² with the coefficient $\psi_{2,i}$ = 0.3 for the quasi-permanent combination

Maximum cantilever length

The maximum cantilever length, depending on the length of flange of the outer corner with the employment of the Schöck Isokorb[®] XT type C, can be limited by the load-bearing capacity.

Expansion joint spacing

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

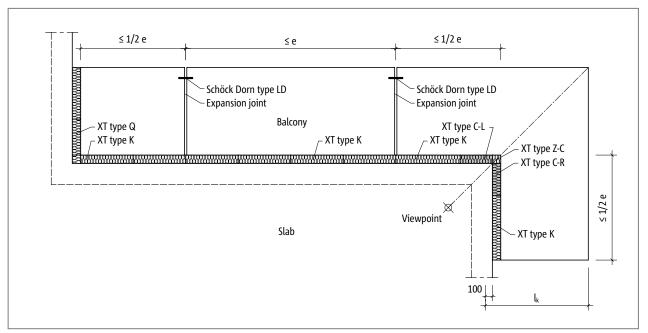


Fig. 63: Schöck Isokorb® XT type C: Expansion joint arrangement

Schöck Isokorb® XT type C		L-M1, R-M1	L-M2, R-M2	
Maximum expansion joint spacing		e [m]		
Insulating element thickness [mm]	120	19.8	17.0	

Schöck Isokorb® XT type C combined with	XT type K	XT type Q, XT type Q-VV	XT type Q-P, XT type Q-P-VV, XT type Q-PZ	XT type D
maximum expansion joint spacing from fixed point e/2 [m]	≤ e/2 see p. 32	≤ e/2 see p. 101	≤ e/2 see p. 115	≤ e/2 see p. 146

Edge distances

The Schöck Isokorb® must be so arranged at the expansion joint that the following conditions are met:

- For the centre distance of the tension bars from the free edge or from the expansion joint: $e_R \ge 50$ mm and $e_R \le 150$ mm applies.
- For the centre distance of the compression elements from the free edge or from the expansion joint: $e_R \ge 50$ mm applies.

For the centre distance of the shear force bars from the free edge or from the expansion joint: $e_R \ge 100$ mm and $e_R \le 150$ mm applies.

Product description

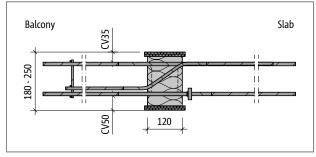


Fig. 64: Schöck Isokorb® XT type C-L-CV35: Product section

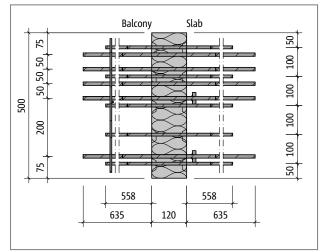


Fig. 66: Schöck Isokorb® XT type C-L-M1-V1: Product plan view

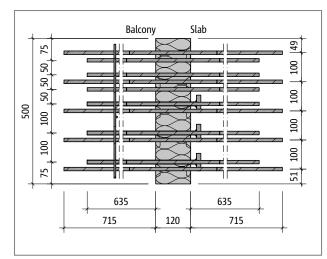


Fig. 68: Schöck Isokorb® XT type C-L-M2-V2: Product plan view

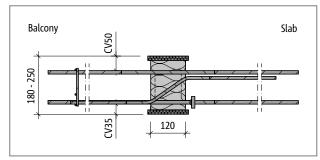


Fig. 65: Schöck Isokorb® XT type C-L-CV50: Product section

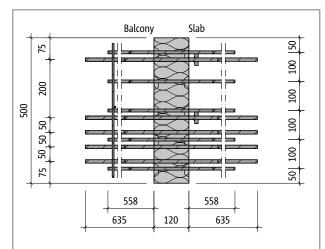


Fig. 67: Schöck Isokorb® XT type C-R-M1-V1: Product plan view

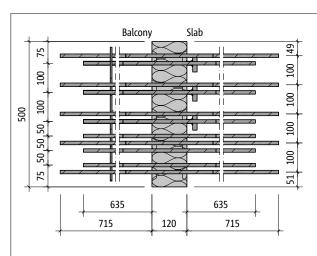


Fig. 69: Schöck Isokorb[®] XT type C-R-M2-V2: Product plan view

Product information

- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Minimum height Schöck Isokorb[®] XT type C with V2: H_{min} = 200 mm
- Concrete cover of the tension bars: CV35 = 35 mm, CV50 = 50 mm
- ▶ The Schöck Isokorb[®] XT type C is also available as variant XT type C-F for use with precast slabs.

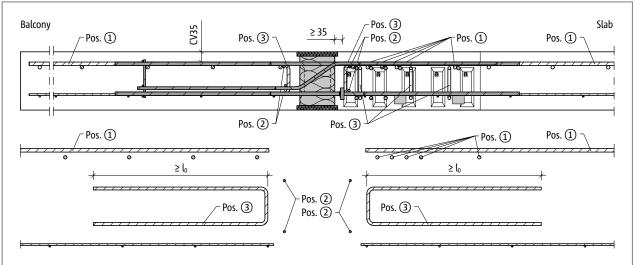
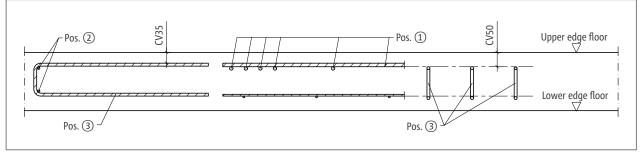
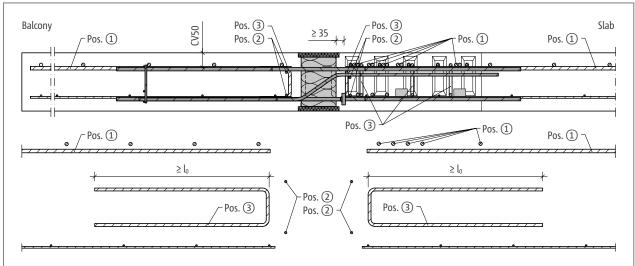



Fig. 70: Schöck Isokorb® XT type C: On-site reinforcement outer corner (section XT type C-L-CV35, view XT type C-R-CV50)

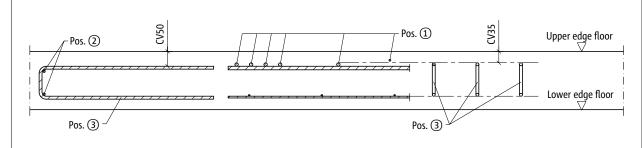
Indirect support, height of the on-site reinforcement with Schöck Isokorb® XT type C-L-CV35


Recommendation for the on-site connection reinforcement

Details on the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C20/25 or C25/30; structurally selected: aa_s lapping reinforcement $\ge aa_s$ Isokorb[®] tension bars.

Recommendation for the on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; positively selected: a_s lapping reinforcement $\ge a_s$ Isokorb[®] tension bars.


Schöck Isokorb® XT type C	M1-V1	M1-V2	M2-V1	M2-V2			
On-site reinforcement	Concrete strength class ≥ C25/30						
Pos. 1 Lapping reinforcement							
Pos. 1 [mm ² /Element]	565	565	678	678			
Pos. 1 Variant	5•H12	5•H12	6•H12	6•H12			
Pos. 2 Steel bars along the insulation joint							
Pos. 2	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8			
Pos. 3 Stirrup							
Pos. 3 [mm ² /Element]	225	325	225	325			
Pos. 3 Variant	3 • H10	5•H10	3•H10	5•H10			
Lap length l₀ [mm]	680	680	680	680			

Indirect support, outer corner balcony XT type C-L-CV50

Fig. 71: Schöck Isokorb® XT type C: On-site reinforcement outer corner (section XT type C-L-CV50, view XT type C-R-CV35)

Indirect support, height of the on-site reinforcement with Schöck Isokorb® XT type C-L-CV50

The reinforcement in the reinforced concrete slab is determined from the structural engineer's design. With this both the effective moment and the effective shear force should be taken into account.

In addition, it is to be ensured that the tension bars of the Schöck Isokorb[®] are 100% lapped. The existing inner slab reinforcement can be taken into account as long as the maximum separation to the tension bars of the Schöck Isokorb[®] of 4Ø is maintained. Additional reinforcement may be required.

Information about on-site reinforcement

- Alternative connection reinforcement is possible. For the determination of the lap length, the rules according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA apply FA reduction of the required lap length with m_{Ed}/m_{Rd} is permitted.
- The indicative minimum concrete strength class of the external structural component is C32/40.

Direct support, outer corner balcony XT type C-L-CV35

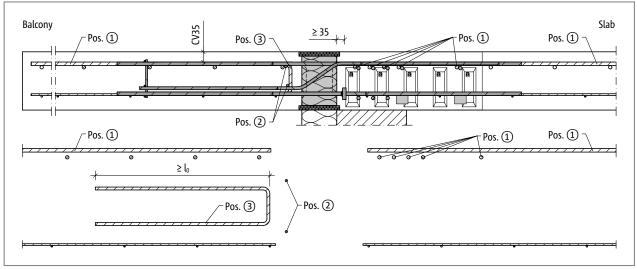
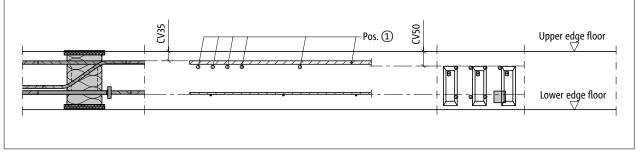
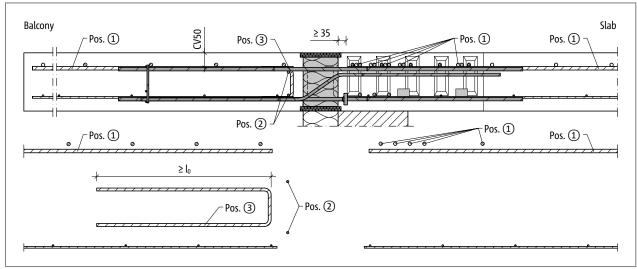
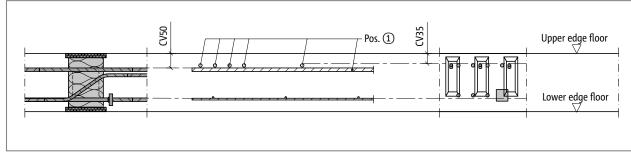



Fig. 72: Schöck Isokorb® XT type C: On-site reinforcement outer corner balcony (section XT type C-L-CV35, view XT type C-R-CV50)


Direct support, elevation of the on-site reinforcement with Schöck Isokorb® XT type C-L-CV35

Recommendation for the on-site connection reinforcement

Details on the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C20/25 or C25/30; structurally selected: aa_s lapping reinforcement $\ge aa_s$ Isokorb[®] tension bars.


Schöck Isokorb® XT type C	M1-V1	M1-V2	M2-V1	M2-V2			
On-site reinforcement	Concrete strength class ≥ C25/30						
Pos. 1 Lapping reinforcement							
Pos. 1 [mm ² /Element]	565	565	678	678			
Pos. 1 Variant	5•H12	5•H12	6•H12	6•H12			
Pos. 2 Steel bars along the insulation joint							
Pos. 2	2 • H8	2 • H8	2 • H8	2 • H8			
Pos. 3 Stirrup							
Pos. 3 [mm ² /Element]	225	325	225	325			
Pos. 3 Variant	3•H10	5•H10	3•H10	5•H10			
Lap length l₀ [mm]	680	680	680	680			

Direct support, outer corner balcony XT type C-L-CV50

Fig. 73: Schöck Isokorb® XT type C: On-site reinforcement outer corner (section XT type C-L-CV50, view XT type C-R-CV35)

Direct support, elevation of the on-site reinforcement with Schöck Isokorb® XT type C-L-CV50

The reinforcement in the reinforced concrete slab is determined from the structural engineer's design. With this both the effective moment and the effective shear force should be taken into account.

In addition, it is to be ensured that the tension bars of the Schöck Isokorb[®] are 100% lapped. The existing inner slab reinforcement can be taken into account as long as the maximum separation to the tension bars of the Schöck Isokorb[®] of 4Ø is maintained. Additional reinforcement may be required.

Information about on-site reinforcement

- Alternative connection reinforcement is possible. For the determination of the lap length, the rules according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA apply FA reduction of the required lap length with m_{Ed}/m_{Rd} is permitted.
- The indicative minimum concrete strength class of the external structural component is C32/40.

Precast construction

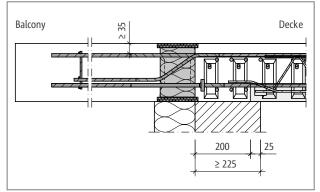


Fig. 74: Schöck Isokorb® XT type C: Prefabricated slab without edge support with TICS (section XT type C-L-CV35, view XT type C-R-CV50)

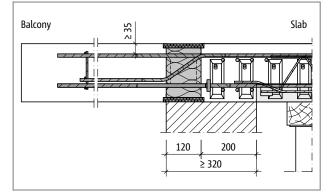


Fig. 76: Schöck Isokorb® XT type C: Prefabricated slab with edge support with thermal insulating masonry (section XT type C-L-CV35, view XT type C-R-CV50)

at least 190 mm from the insulating element edge.

Precast construction

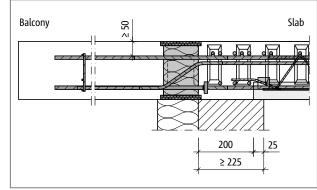


Fig. 75: Schöck Isokorb® XT type C: Prefabricated slab without edge support with TICS (section XT type C-R-CV50, view XT type C-L-CV35)

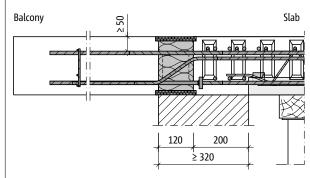


Fig. 77: Schöck Isokorb[®] XT type C: Prefabricated slab with edge support with thermal insulating masonry (section XT type C-R-CV50, view XT type C-L-CV35)

The Schöck Isokorb® XT type C requires, in combination with precast slabs, a block-out in the area of the compression rods of

TI Schöck Isokorb® XT for reinforced concrete structures/GB/2020.1/November

🗹 Check list

- Is the combination possibility (XT type C-R-CV35 and XT type C-L-CV50 or vice versa) taken into account with the corner balcony?
 - Is a Schöck Isokorb® XT type K-CV50 planned in connection to the Schöck Isokorb®XT type C-L-CV50 or XT type C-R-CV50?
- Is the minimum slab thickness (H_{min} = 180 mm, or with V2 H_{min} = 200 mm) of the Schöck Isokorb[®] XT type C taken into account
- Are the recommendations for the limitation of the slenderness observed?
- Are the maximum allowable expansion joint spacings taken into account?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- □ Is the in-situ concrete strip (width ≥ 190 mm from insulating element of the Schöck Isokorb[®] XT type C) required in connection with prefabricated floors indicated in the implementation plans?
- Has the cantilevered system length or the system support width been taken as a basis?
- Are the Schöck FEM guidelines taken into account with the calculation using FEM?
- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- With the selection of the design table is the relevant concrete cover taken into account?
- Has the additional proportionate deflection resulting from the Schöck Isokorb® been taken into account?
- □ Is the drainage direction taken into account with the resulting camber information? Is the degree of camber entered in the working drawings?
- Have existing horizontal loads e.g. from wind pressure, been taken into account as planned? Are additional Schöck Isokorb[®] XT type H required for this?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- With precast balconies are possibly necessary gaps for the front side transportation anchors and downpipes with internal drainage taken into account? Is the maximum centre distance of 300 mm for the Isokorb® bars observed?
- Is the XT type K-U, K-O (from page 61) or a special design required instead of a Schöck Isokorb[®] XT type K due to connection with height offset or to a wall?

Schöck Isokorb® XT type K-U, K-O

Schöck Isokorb® XT type K-U

Suitable for cantilevered balconies with height offset downwards. The balcony lies lower than the floor slab. Suitable for cantilevered balconies, which are connected to a reinforced concrete wall above. It transfers negative moments and positive shear forces.

Schöck Isokorb® XT type K-O

Suitable for cantilevered balconies with height offset upwards. The balcony lies higher than the floor slab. Suitable for cantilevered balconies, which are connected to a reinforced concrete wall below. It transfers negative moments and positive shear forces.

Product change

Old

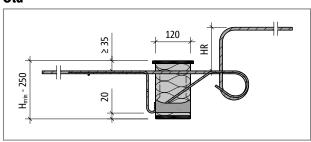


Fig. 78: Schöck Isokorb® XT type K-HV: Product section

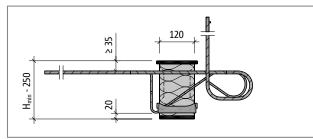


Fig. 80: Schöck Isokorb® XT type K-WO: Product section

Old

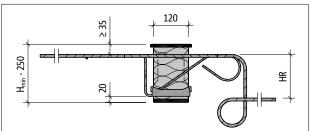


Fig. 81: Schöck Isokorb® XT type K-BH: Product section

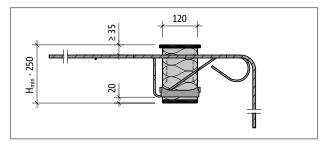


Fig. 83: Schöck Isokorb® XT type K-WU: Product section

Product change

- ▶ The Schöck Isokorb® XT type K-HV and the Schöck Isokorb® XT type K-WO are replaced by the Schöck Isokorb® XT type K-U.
- ▶ The Schöck Isokorb® XT type K-BH and the Schöck Isokorb® XT type K-WU are replaced by the Schöck Isokorb® XT type K-O.

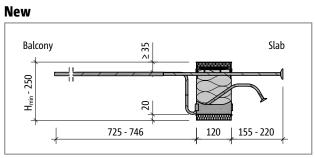


Fig. 79: Schöck Isokorb® XT type K-U: Product section

New

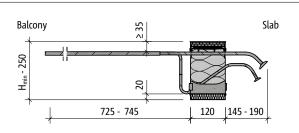


Fig. 82: Schöck Isokorb® XT type K-O: Product section

K-Upe K-O

Balcony with height offset downwards using Schöck Isokorb® XT type K

Height offset h_v ≤ h_D - c_a - d_s - c_i

▶ If $h_v \le h_D - c_a - d_s - c_i$ then the Schöck Isokorb[®] XT type K with straight tension bars can be selected.

Height offset h_v > h_D - c_a -d_s -c_i

If the condition $h_v \le h_D - c_a - d_s - c_i$ is not met, the connection can be implemented using the Schöck Isokorb[®] XT type K-U.

Recommendation: Downstand beam width at least 220 mm

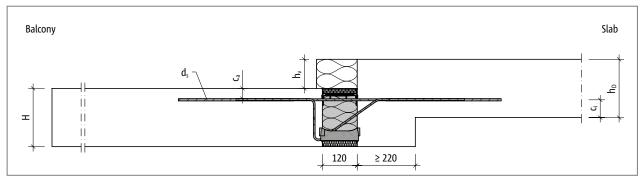
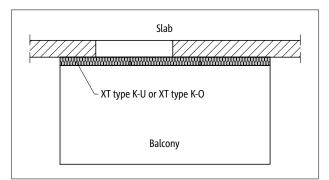



Fig. 84: Schöck Isokorb® XT type K: Small height offset downwards (balcony subjacent)

Height offset h_v > h_D - c_a -d_s -c_i

If the condition $h_v \le h_D - c_a - d_s - c_i$ is not met, the connection can be implemented using Schöck Isokorb[®] XT type K-U.

Element arrangement | Installation cross sections

Fig. 85: Schöck Isokorb® XT type K-U/K-O: Cantilevered balcony

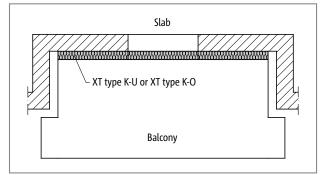


Fig. 87: Schöck Isokorb[®] XT type K-U/K-O: Balcony with facade offset

Balcony with height offset upwards

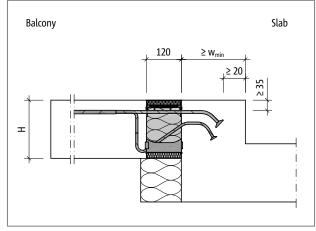


Fig. 89: Schöck Isokorb® XT type K-O: Balcony with height offset upwards and external insulation

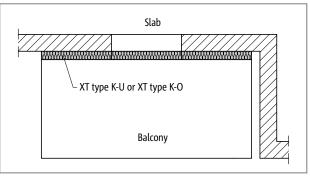


Fig. 86: Schöck Isokorb® XT type K-U/K-O: Balcony with facade offset

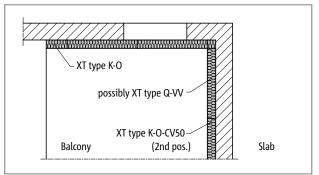


Fig. 88: Schöck Isokorb® XT type K-U/K-O, XT type Q-VV: Balcony with inner corner, supported two-sided

Balcony with height offset downwards

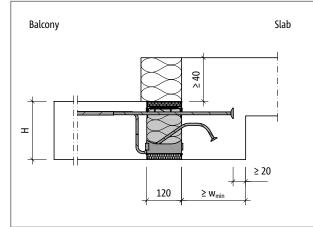


Fig. 90: Schöck Isokorb® XT type K-U: Balcony with height offset downwards and external insulation

Installation cross sections

Wall connection upwards

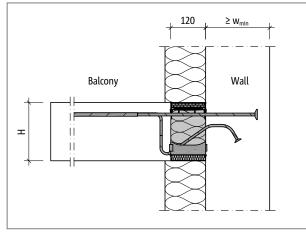


Fig. 91: Schöck Isokorb® XT type K-U: Wall connection upwards with external insulation

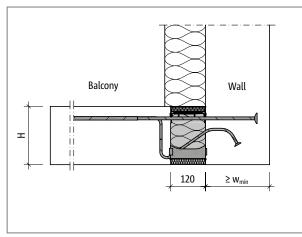


Fig. 93: Schöck Isokorb® XT type K-U: Wall connection upwards with external insulation

Wall connection downwards

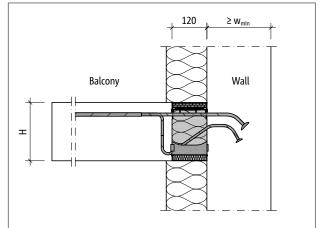


Fig. 92: Schöck Isokorb® XT type K-O: Wall connection downwards with external insulation

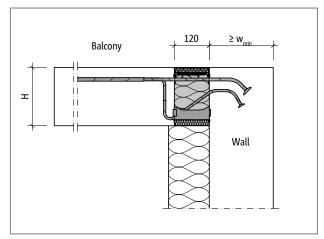
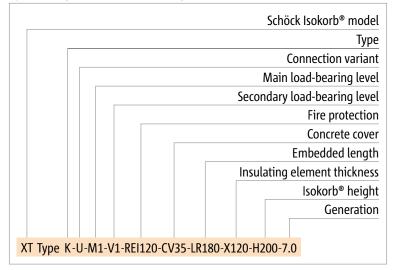


Fig. 94: Schöck Isokorb® XT type K-O: Wall connection downwards with external insulation

🚺 Geometry

- Use of the Schöck Isokorb® XT types K-U and K-O requires a minimum wall thickness and a minimum downstand beam width of 175 mm.
- Depending on the selected Schöck Isokorb[®] type and on the selected Isokorb[®] height a minimum structural component size w_{min} is required (see page 69)
- A minimum concrete cover of 60 mm above the anchor head must be complied with.


Product selection | Type designations | Special designs

Schöck Isokorb® XT type K-U variants

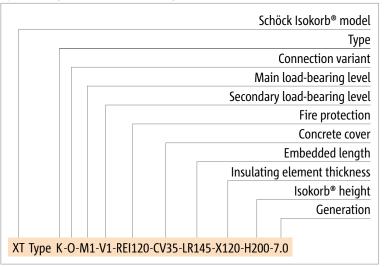
The configuration of the Schöck Isokorb® XT type K-U can vary as follows:

- Main load-nearing level: M1 to M4
- Secondary load-bearing level: V1
- Fire resistance class: REI120 (standard)
- Concrete cover of the tension bars: CV35 = 35 mm, CV50 = 50 mm
- Bond length: LR = 155 mm to 220 mm; depends on the Isokorb[®] height, see page 69.
- Insulating element thickness: X120 = 120 mm
- Isokorb[®] height: H = H_{min} to 250 mm
- Generation: 7.0

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).


Product selection | Type designations | Special designs

Schöck Isokorb® XT type K-O Variants

The configuration of the Schöck Isokorb® XT type K-O can vary as follows:

- Main load-bearing level: M1 to M4
- Secondary load-bearing level: V1
- Fire resistance class: REI120 (standard)
- Concrete cover of the tension bars: CV35 = 35 mm, CV50 = 50 mm
- Bond length: LR = 145 mm to 190 mm; depends on the Isokorb[®] height, see page 69.
- Insulating element thickness: X120 = 120 mm
- Isokorb[®] height: H = H_{min} to 250 mm
- Generation: 7.0

Type designations in planning documents

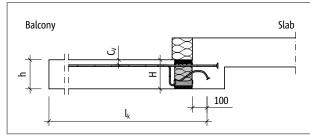
XT type K-U K-O

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

Minimum component dimensions

Schöck Isokorb® XT type K-U		M1 - M4						
minimum component dimension for		C۱	/35	CV50				
		w _{min} [mm]	LR [mm]	w _{min} [mm]	LR [mm]			
lsokorb® height H [mm]	160	175	155	-	-			
	170	175	155	-	-			
	180	175	155	175	155			
	190	175	155	175	155			
	200	200	180	175	155			
	210	200	180	175	155			
	220	220	200	200	180			
	230	220	200	200	180			
	240	240	220	220	200			
	250	240	220	220	200			


Schöck Isokorb® XT type K-O		M1 - M4					
minimum component dimension for		CV	35	CV50			
		w _{min} [mm] LR [mm]		w _{min} [mm]	LR [mm]		
	160	175	145	-	-		
	170	175	145	-	-		
	180	175	145	175	145		
	190	175	145	175	145		
lsokorb®	200	175	145	175	145		
height H [mm]	210	175	145	175	145		
[]	220	190	170	175	145		
	230	190	170	175	145		
	240	210	190	190	170		
	250	210	190	190	170		

Design

Notes on design

- With CV50, H = 180 mm is the lowest Isokorb[®] height, this requires a minimum slab thickness of h = 180 mm.
- Use of the Schöck Isokorb® XT types K-U and K-O requires a minimum wall thickness and a minimum downstand beam width of 175 mm.
- ▶ The employment of Schöck Isokorb[®] XT type K-U and K-O is possible with other connection situations (175 mm ≤ w_{vorh} < w_{min}) taking into account reduced load-bearing capacity. For this please make contact with the Schöck Design Department (see page 3).
- Depending on the selected Schöck Isokorb[®] type and on the selected Isokorb[®] height a minimum structural component size w_{min} is required (see page 69)
- The design values for the Schöck Isokorb[®] XT type K-U depend on the available downstand beam width and wall thickness (w_{vorb}).
- A minimum concrete cover of 60 mm above the anchor head must be complied with.
- > Direction of the load application in the neighbouring structural element determines the Isokorb[®] connection variant.

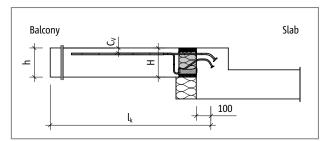


Fig. 95: Schöck Isokorb® XT type K-U: Static system

Fig. 96: Schöck Isokorb® XT type K-O: Static system

C25/30 design

Schöck Isokorb® XT type K-U			M1	M2	M3	M4		
.	Concrete cover CV [mm]		Concrete strength class ≥ C25/30					
Design values with			200 mm > downstand beam width ≥ 175 mm 200 mm >wall thickness ≥ 175 mm					
	CV35	CV50	m _{Rd,y} [kNm/m]					
	160		-11.5	-15.4	-19.2	-26.1		
		180	-12.2	-16.3	-20.4	-27.7		
	170		-12.9	-17.3	-21.6	-29.3		
Isokorb® height		190	-13.7	-18.2	-22.8	-30.9		
H [mm]	180		-14.4	-19.2	-23.9	-32.5		
		200	-15.1	-20.1	-25.1	-34.1		
	190		-15.8	-21.1	-26.3	-35.7		
		210	-16.5	-22.0	-27.5	-37.4		
			v _{Rd,z} [kN/m]					
Secondary load-bearing level	V1		50.0	75.0	75.0	75.0		

Schöck Isokorb® XT type K-U			M1	M2	M3	M4		
Design values with	Concrete cover CV [mm]		Concrete strength class ≥ C25/30					
			220 mm > downstand beam width ≥ 200 mm 220 mm > wall thickness ≥ 200 mm					
	CV35	CV50	m _{Rd.y} [kNm/m]					
	160		-15.1	-20.1	-25.1	-34.1		
		180	-16.0	-21.3	-26.6	-36.2		
	170		-16.9	-22.5	-28.2	-38.3		
		190	-17.8	-23.8	-29.7	-40.4		
	180		-18.8	-25.0	-31.3	-42.5		
lsokorb® height		200	-19.7	-26.3	-32.8	-44.6		
H [mm]	190		-20.6	-27.5	-34.4	-46.7		
		210	-21.6	-28.7	-35.9	-48.8		
	200		-22.5	-30.0	-37.5	-50.9		
		220	-23.4	-31.2	-39.0	-53.0		
	210		-24.3	-32.5	-40.6	-55.1		
		230	-25.3	-33.7	-42.1	-57.2		
			v _{Rd,z} [kN/m]					
Secondary load-bearing level	V1		50.0	75.0	75.0	75.0		

Notes on design
 Static system and information on the design see page 70.

C25/30 design

Schöck Isokorb® XT type K-U			M1	M2	M3	M4	
Design values with	Concrete cover CV [mm]		Concrete strength class ≥ C25/30				
			Downstand beam width ≥ 220 mm wall thickness ≥ 220 mm				
	CV35	CV50	m _{rd,y} [kNm/m]				
	160		-17.0	-24.3	-30.4	-41.1	
		180	-18.2	-25.8	-32.2	-43.8	
	170		-19.3	-27.3	-34.1	-46.3	
		190	-20.5	-28.8	-36.0	-48.8	
	180		-21.6	-30.3	-37.8	-51.4	
		200	-22.9	-31.8	-39.7	-53.9	
	190		-23.9	-33.3	-41.6	-56.5	
		210	-25.2	-34.8	-43.5	-59.0	
	200		-26.3	-36.3	-45.3	-61.6	
		220	-27.6	-37.8	-47.2	-64.1	
	210		-28.7	-39.3	-49.1	-66.7	
		230	-30.1	-40.8	-51.0	-69.2	
	220		-31.1	-42.3	-52.8	-71.7	
		240	-32.5	-43.8	-54.7	-74.3	
lsokorb® height	230		-33.6	-45.3	-56.6	-76.8	
H [mm]		250	-35.0	-46.8	-58.4	-79.4	
	Concrete cover CV [mm]		Downstand beam width ≥ 240 mm wall thickness ≥ 240 mm				
	CV35	CV50	m _{rd.y} [kNm/m]				
	240		-36.1	-48.3	-60.3	-81.9	
	250		-38.4	-51.3	-64.1	-87.0	
			v _{Rd,z} [kN/m]				
Secondary load-bearing level	V1		50.0	75.0	75.0	75.0	

Schöck Isokorb® XT type K-U	M1	M2	M3	M4
Isokorb® length [mm]	1000	1000	1000	1000
Tension bars	4 Ø 12	6 Ø 12	8 Ø 12	10 Ø 12
Anchor bars	4 Ø 10	6 Ø 10	8 Ø 10	10 Ø 10
Shear force bars V1	4 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8
Pressure bearing (piece)	6	8	10	16
Special stirrup (piece)	-	-	-	4

Notes on design
 Static system and information on the design see page 70.

C25/30 design

Schöck Isokorb® XT type K-O		e K-O	M1	M2	M3	M4				
- · ·	Concret	te cover		Concrete strength class ≥ C25/30						
Design values with	CV [[mm]	Downstand beam width ≥ 175 mm wall thickness ≥ 175 mm							
	CV35	CV50								
	160		-17.0	-24.3	-30.4	-41.1				
		180	-18.2	-25.8	-32.2	-43.8				
	170		-19.3	-27.3	-34.1	-46.3				
		190	-20.5	-28.8	-36.0	-48.8				
	180		-21.6	-30.3	-37.8	-51.4				
		200	-22.9	-31.8	-39.7	-53.9				
	190		-23.9	-33.3	-41.6	-56.5				
		210	-25.2	-34.8	-43.5	-59.0				
	200		-26.3	-36.3	-45.3	-61.6				
		220	-27.6	-37.8	-47.2	-64.1				
lsokorb® height	210		-28.7	-39.3	-49.1	-66.7				
H [mm]		230	-30.1	-40.8	-51.0	-69.2				
		te cover [mm]	Downstand beam width ≥ 190 mm wall thickness ≥ 190 mm							
	CV35	CV50		m _{Rd,y} [kNm/m]					
	220		-31.1	-42.3	-52.8	-71.7				
		240	-32.5	-43.8	-54.7	-74.3				
	230		-33.6	-45.3	-56.6	-76.8				
		250	-35.0	-46.8	-58.4	-79.4				
		te cover [mm]			n width ≥ 210 mm ess ≥ 210 mm					
	CV35	CV50		m _{Rd,y} [kNm/m]					
	240		-36.1	-48.3	-60.3	-81.9				
	250		-38.4	-51.3	-64.1	-87.0				
				V _{Rd,z} [kN/m]					
Secondary load-bearing level	V1		50.0	75.0	75.0	75.0				

Schöck Isokorb® XT type K-O	M1	M2	M3	M4
Isokorb® length [mm]	1000	1000	1000	1000
Tension bars	4 Ø 12	6 Ø 12	8 Ø 12	10 Ø 12
Anchor bars	4 Ø 10	6 Ø 10	8 Ø 10	10 Ø 10
Shear force bars V1	4 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8
Pressure bearing (piece)	6	8	10	16
Special stirrup (piece)	-	-	-	4

Notes on design
 Static system and information on the design see page 70.

-Y Y Y

Deflection/Camber

Deflection

The deflection factors given in the table (tan α [%]) result alone from the deflection of the Schöck Isokorb[®] under 100% steel utilisation. They serve for the estimation of the required camber. The total arithmetic camber of the balcony slab formwork results from the calculation according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA plus the deflection from Schöck Isokorb[®]. The camber of the balcony slab formwork to be given by the structural engineer/designer in the implementation plans (Basis: Calculated total deflection from cantilever slab + floor rotation angle + Schöck Isokorb[®]) should be such that the scheduled drainage direction is met (round up: With drainage towards the building facade, round down: With drainage towards the cantilever slab end.

deflection (p) as a result of Schöck Isokorb®

Factors to be applied:

 $= \tan \alpha \cdot l_k \cdot (m_{pd} / m_{Rd}) \cdot 10 \ [mm]$

- $\tan \alpha$ = apply table value
 - = cantilever length [m]
 - relevant bending moment [kNm/m] in the ultimate limit state for the determination of the deflection p [mm] from Schöck Isokorb[®].
 The load combination to be applied for the deformation is laid down by the structural engineer.

= Maximum design moment [kNm/m] of the Schöck Isokorb®

(Recommendation: Determine load combination for the determination of the camber $w_{\ddot{u}}: g+q/2, m_{\ddot{u}d}$ in the ultimate limit state)

m_{Rd}

р

l_k m_{pd}

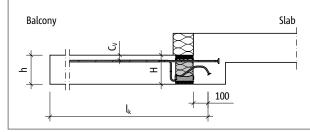


Fig. 97: Schöck Isokorb® XT type K-U: Static system

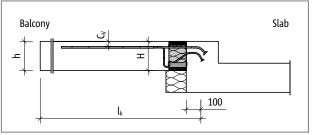


Fig. 98: Schöck Isokorb® XT type K-O: Static system

Deflection/Camber

Schöck Isoko	orb® XT type	К	U
		tan c	x [%]
Deflection f	actors when	200 mm > w	_{exist} ≥ 175 mm
		CV35	CV50
	160	1.0	-
	170	0.8	-
lsokorb® height H	180	0.8	0.9
[mm]	190	0.7	0.8
[]	200	-	0.7
	210	-	0.7

Schöck Isoko	orb® XT type	К	-U					
		tan d	tan α [%]					
Deflection f	actors when	220 mm > w	_{exist} ≥ 200 mm					
		CV35	CV50					
	160	1.1	-					
	170	1.0	-					
	180	0.9	1.1					
lsokorb® height H	190	0.8	1.0					
[mm]	200	0.8	0.9					
	210	0.7	0.8					
	220	-	0.7					
	230	-	0.7					

Schöck Isok	orb® XT type	К	U					
		tan c	tan α [%]					
Deflection f	actors when	W _{exist} ≥ 2	220 mm					
		CV35	CV50					
	160	1.3	-					
	170	1.1	-					
	180	1.0	1.2					
	190	0.9	1.1					
lsokorb® height H	200	0.8	1.0					
[mm]	210	0.8	0.9					
[]	220	0.7	0.8					
	230	0.7	0.7					
	240	0.6	0.7					
	250	0.6	0.7					

Notes on deformation

- The deflection values for Schöck Isokorb® XT type K-U depend upon the available downstand beam width and wall thickness (w_{vorh}).
- ▶ The minimum structural element dimension wmin = 240 mm for CV 35 is to be observed for $H \ge 240$ mm.

Deflection/Camber | Slenderness

Deflection factors XT type K-O

Schöck Isoko	orb [®] XT type	к	-0					
		tan	tan α [%]					
Deflection f	actors when	w _{exist} ≥ 175 mm						
		CV35	CV50					
	160	1.3	-					
	170	1.1	-					
	180	1.0	1.2					
	190	0.9	1.1					
Isokorb®	200	0.8	1.0					
height H [mm]	210	0.8	0.9					
[]	220	0.7	0.8					
	230	0.7	0.7					
	240	0.6	0.7					
	250	0.6	0.7					

Slenderness

In order to safeguard the serviceability limit state we recommend the limitation of the slenderness to the following maximum cantilever lengths max l_k [m]:

Schöck Isoko	orb® XT type	K-U	К-О						
maximum cantilever		l _{k,ma} ,	l _{k,max} [m]						
length	n with	CV35	CV50						
	160	1.65	-						
	170	1.78	-						
	180	1.90	1.70						
	190	2.03	1.80						
lsokorb®	200	2.15	1.90						
height H [mm]	210	2.28	2.00						
[]	220	2.40	2.10						
	230	2.53	2.20						
	240	2.65	2.30						
	250	2.78	2.40						

Maximum cantilever length

The tabular values are based on the following assumptions:

- Accessible balcony
- Specific weight of concrete γ=25 kN/m³
- ▶ Dead weight of the balcony surfacing $g_2 \le 1.2 \text{ kN/m}^2$
- Balcony rail $g_R \le 0.75 \text{ kN/m}$
- Service load q = 4.0 kN/m² with the coefficient $\psi_{2,i}$ = 0.3 for the quasi-permanent combination

Maximum cantilever length

▶ The maximum cantilever length for ensuring the serviceability limit state is a benchmark. It can be limited with the employment of the Schöck Isokorb® XT type K through the load-bearing capacity.

Expansion joint spacing

Maximum expansion joint spacing

If the length of the structural component length exceeds the maximum expansion joint spacing e, then the expansion joints must be integrated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. With fixed points such as, for example, balcony corners or with the employment of the Schöck Isokorb[®] XT types H, half the maximum expansion joint spacing e/2 applies.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

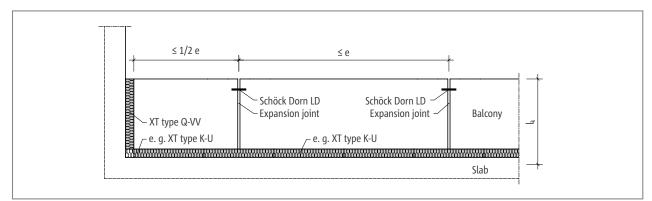


Fig. 99: Schöck Isokorb® XT type K-U: Expansion joint configuration

Schöck Isokorb® XT type		К-U К-О
Maximum expansion joint spaci	ng e	e [m]
Insulating element thickness [mm] 120		21.7

Edge distances

The Schöck Isokorb® must be so arranged at the expansion joint that the following conditions are met:

- For the centre distance of the tension bars from the free edge or from the expansion joint: $e_R \ge 50$ mm and $e_R \le 150$ mm applies.
- For the centre distance of the compression elements from the free edge or from the expansion joint: $e_R \ge 50$ mm applies.
- For the centre distance of the shear force bars from the free edge or from the expansion joint: $e_R \ge 100$ mm and $e_R \le 150$ mm applies.

Product description

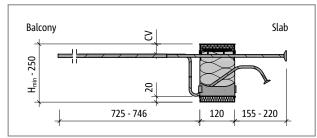


Fig. 100: Schöck Isokorb® XT type K-U-M2: Product section

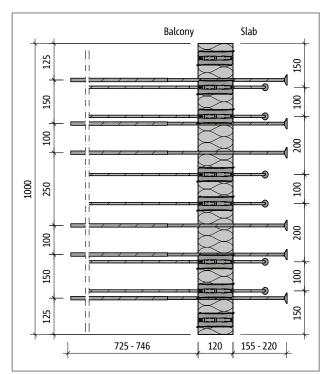


Fig. 102: Schöck Isokorb[®] XT type K-U-M2: Product plan view

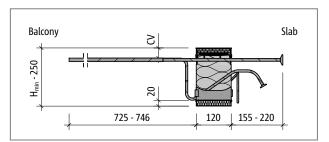


Fig. 101: Schöck Isokorb® XT type K-U-M4: Product section

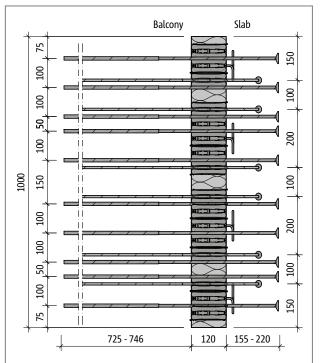


Fig. 103: Schöck Isokorb® XT type K-U-M4: Product plan view

Product information

- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Minimum height Schöck Isokorb® XT type K-U: H_{min} = 160 mm
- On-site spacing of the Schöck Isokorb[®] XT type K-U to the unreinforced points possible; take into account the reduced load-bearing force due to spacing; take into account required edge separations
- Concrete cover of the tension bars: CV35 = 35 mm, CV50 = 50 mm

Product description

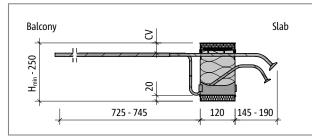


Fig. 104: Schöck Isokorb® XT type K-O-M2: Product section

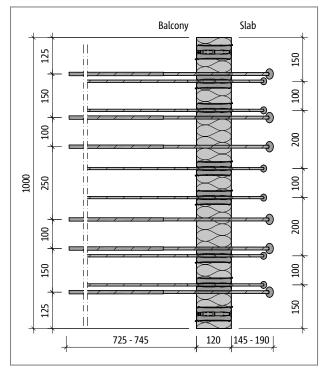


Fig. 106: Schöck Isokorb® XT type K-O-M2: Product plan view

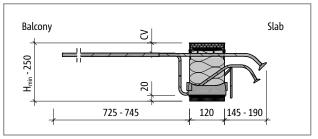


Fig. 105: Schöck Isokorb® XT type K-O-M4: Product section

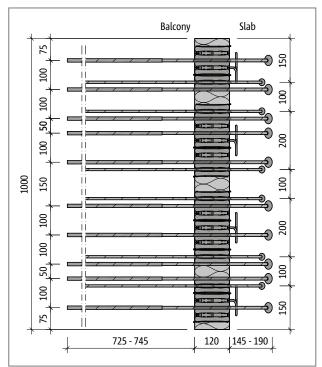


Fig. 107: Schöck Isokorb® XT type K-O-M4: Product plan view

Product information

- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Minimum height Schöck Isokorb® XT type K-O: H_{min} = 160 mm
- On-site spacing the Schöck Isokorb® XT type K-O to the unreinforced points possible; take into account the reduced load-bearing force due to spacing; take into account required edge separations
- Concrete cover of the tension bars: CV35 = 35 mm, CV50 = 50 mm

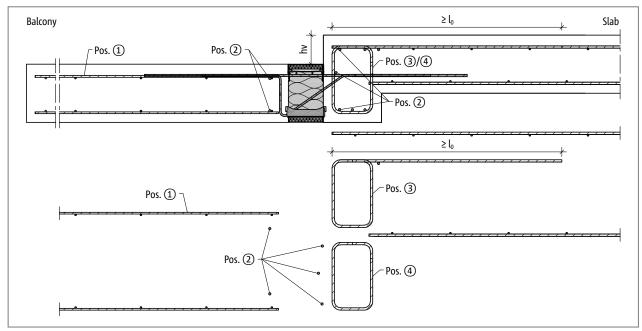


Fig. 108: Schöck Isokorb® XT type K: On-site reinforcement for small height offset

Information about on-site reinforcement

- Due to the reinforcement density in the downstand beam the use up to XT type K-M7 only is recommended.
- > When reinforcing with different diameters the reinforcement specification for the largest diameter is relevant.
- The mixing of steel bar and wire mesh reinforcement is possible. The corresponding mesh reinforcement can be taken into account when determining the additional reinforcement.
- For the redirection of the tension force on the floor-side, a stirrup reinforcement Pos. 3 is required in the floor edge beam (upper side length l_{0,bü}). This stirrup reinforcement Pos.3 safeguards the load transmission from the Schöck Isokorb[®].
- ▶ The shear force reinforcement Pos. 4 conforms to the loading of balcony, floor and the supporting width of the downstand/ upstand beam. Therefore the shear force reinforcement in individual cases is to be verified by the structural engineer.
- The required lateral reinforcement in the overlap area is to be verified according to BS EN 1992-1-1 (EC2), 8.7 to 8.8 and BS EN 1992-1-1/NA, NDPs nd NCIs to 8.7 and 8.8.
- The Schöck Isokorb® XT type K is if necessary to be laid before the installation of the downstand or upstand beam reinforcement.
- Pos. 3: Value for Isokorb[®] heights between 160 mm and 250 mm may be interpolated.
- Pos. 3: For larger downstand beam widths a reduction of the required reinforcement acc. to the structural engineer's details is possible.

Recommendation for on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; variants adapted to load-bearing level. The required reinforcement cross-section depends on the bar diameter of the steel bar or wire mesh reinforcement.

Schöck Isoko	orb [®] XT type K		N	11	N	12		M3			M4	
On-site	Secondary load level	- 1	V1	V2	V1	V2	V1	V2	VV1	V1	V2	VV1
reinforcement	Location	Height [mm]				•	•	e strengtl te streng				
Pos. 1 overlap reinforce	ement dependin	g on bar di	ameter									
Pos. 1 with Ø8 [mm²/m]			289	258	457	426	575	544	603	661	622	689
Pos. 1 with Ø10 [mm²/m]	Balcony side	160 - 250	352	317	553	518	695	662	722	798	755	825
Pos. 1 with Ø12 [mm²/m]			422	381	664	622	834	794	866	958	906	990
Pos. 2 Steel bars along	the insulation jo	oint										
Dec. 2	Balcony side	160 - 250						2 • H8				
Pos. 2	Floor side	160 - 250						3 • H8				
Pos. 3 stirrup reinforce	ment for redirec	tion of the	tension	force (s	ingle-sh	ear chai	geable)					
Pos. 3 [mm²/m]	Floor side	160	233	258	372	398	475	514	351	552	584	429
Pos. 3 [mm²/m]	Floor side	250	384	409	628	653	808	848	725	938	970	863
Pos. 4 Stirrup reinforce	ment acc. to she	ar force de	sign									
Pos. 4	Floor side	160 - 250		Stirru	ıp reinfo	rcement	according	g to BS EN	1992-1-1	(EC2), 6.2	.3, 9.2.2	

Schöck Isoko	orb [®] XT type K		M5			M6			M7		
On-site	Secondary load level		V1	V2	VV1	V1	V2	VV1	V1	V2	VV1
reinforcement	Location	Height [mm]		Floor (XC1) concrete strength class ≥ C25/30 Balcony (XC4) concrete strength class ≥ C25/30							
Pos. 1 overlap reinforce	ment dependin	g on bar di	ameter								
Pos. 1 with Ø8 [mm²/m]			762	724	754	866	827	880	979	979	990
Pos. 1 with Ø10 [mm²/m]	Balcony side	160 - 250	920	877	902	1044	1001	880	1040	1061	990
Pos. 1 with Ø12 [mm²/m]			1104	1052	1082	1253	1201	880	1102	1143	990
Pos. 2 Steel bars along	the insulation jo	oint									
Pos. 2	Balcony side	160 - 250					2 • H8				
P05. Z	Floor side	160 - 250					3 • H8				
Pos. 3 stirrup reinforcer	ment for redirec	tion of the	tension f	orce (sing	le-shear c	hargeable	:)				
Pos. 3 [mm²/m]	Floor side	160	645	677	489	742	774	609	936	965	746
Pos. 3 [mm²/m]	Floor side	250	1104	1135	970	1278	1310	1185	1592	1621	1412
Pos. 4 Stirrup reinforce	Pos. 4 Stirrup reinforcement acc. to shear force de										
Pos. 4	Floor side	160 - 250		Stirrup re	einforcem	ent accord	ing to BS E	N 1992-1-	1 (EC2), 6.	2.3, 9.2.2	

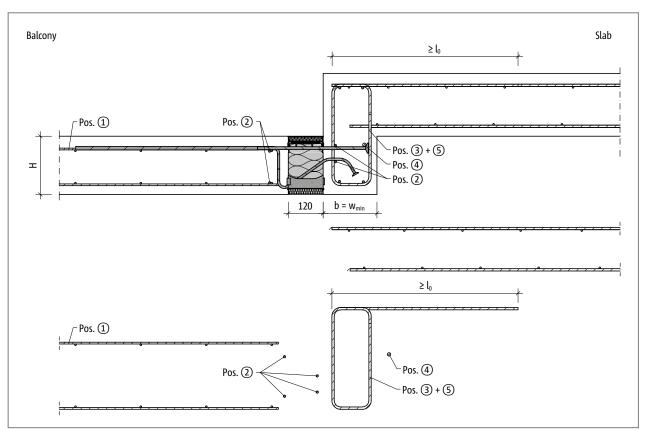


Fig. 109: Schöck Isokorb[®] XT type K-U: On-site reinforcement for balcony with height offset downwards with minimum structural element dimension ($w_{vorh} = w_{min}$)

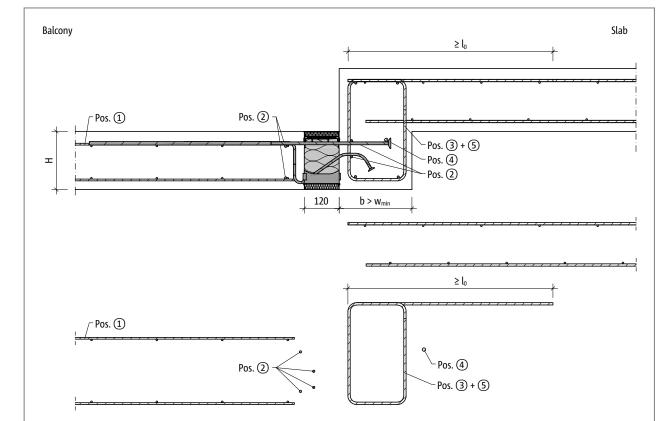


Fig. 110: Schöck Isokorb[®] XT type K-U: On-site reinforcement for balcony with height offset downwards with larger structural element dimension ($w_{vorh} > w_{min}$)

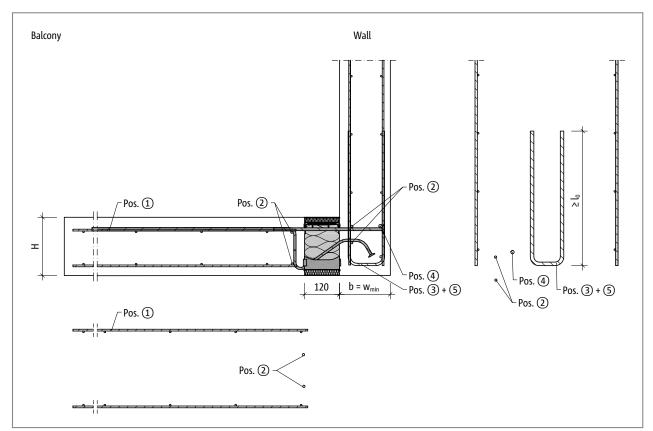


Fig. 111: Schöck Isokorb® XT type K-U: On-site reinforcement for wall connection upwards with minimum structural element dimension (wvorh = wmin)

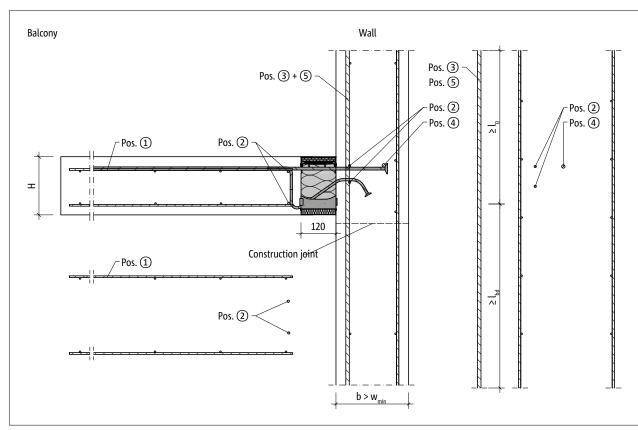


Fig. 112: Schöck Isokorb® XT type K-U: On-site reinforcement for wall connection upwards with larger structural element dimension (w_{varh} > w_{min})

Recommendation for on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; variants adapted to load-bearing level. The required reinforcement cross-section depends on the bar diameter of the steel bar or wire mesh reinforcement.

Schöck Isokor	b® XT type K-U		M1	M2	M3	M4			
On-site	Location	Height	Concrete strength class ≥ C25/30						
reinforcement	LUCALIUII	[mm]	20		beam width ≥ 175 m ickness ≥ 175 mm	m			
Pos. 1 overlap reinforceme	ent depending on	bar diame	eter						
Pos. 1 with Ø8 [mm²/m]			327	436	545	740			
Pos. 1 with Ø10 [mm²/m]	Balcony side	160 - 210	368	498	607	802			
Pos. 1 with Ø12 [mm²/m]			409	559	668	864			
Pos. 2 Steel bars along the	insulation joint								
Pos. 2	balcony side/ downstand beam, wall	160 - 210		2 • 2	• H8				
Pos. 3 Vertical reinforceme	ent								
Pos. 3 [mm²/m] minimum reinforcement	downstand beam, wall	160 - 210	≥ 528	≥ 737	≥ 846	≥ 1041			
Pos. 3 structural element design	downstand beam, wall	160 - 210	0 Taking into account the moments and shear forces provided by the structural engineer						
Pos. 4 Steel bars along the	insulation joint								
Pos. 4	downstand beam, wall	160 - 210	≥ 1 Ø 12						
Pos. 5 splitting tension rei	nforcement								
Pos. 5 [mm²/m]	downstand beam, wall	160 - 210		1	30				

Schöck Isokorl	o® XT type K-U		M1	M2	M3	M4			
On-site	Location	Height	Concrete strength class ≥ C25/30						
reinforcement	LOCATION	[mm]	2	20 mm > downstand 220 mm >wall th	beam width ≥ 200 m ickness ≥ 200 mm	m			
Pos. 1 overlap reinforceme	ent depending on	bar diame	eter						
Pos. 1 with Ø8 [mm²/m]			427	570	712	967			
Pos. 1 with Ø10 [mm²/m]	Balcony side	160 - 230	468	631	774	1029			
Pos. 1 with Ø12 [mm²/m]			509	693	835	1090			
Pos. 2 Steel bars along the	insulation joint								
Pos. 2	balcony side/ downstand beam, wal	160 - 230		2 • 2	• H8				
Pos. 3 Vertical reinforceme	ent								
Pos. 3 [mm²/m] minimum reinforcement	downstand beam, wall	160 - 230	≥ 628	≥ 871	≥ 1013	≥ 1268			
Pos. 3 structural element design	downstand beam, wall	160 - 230	D Taking into account the moments and shear forces provided by the structural engineer						
Pos. 4 Steel bars along the	insulation joint								
Pos. 4	downstand beam, wal	160 - 230) ≥ 1 ø 12						
Pos. 5 splitting tension rei	nforcement								
Pos. 5 [mm²/m]	downstand beam, wal	l 160 - 230		13	30				

Schöck Isokorl	b® XT type K-U		M1	M2	M3	M4		
On-site	Location	Height	Concrete strength class ≥ C25/30					
reinforcement	LOCATION	[mm]	Downstand beam width ≥ 220 mm wall thickness ≥ 220 mm					
Pos. 1 overlap reinforceme	ent depending on	bar diame	eter					
Pos. 1 with Ø8 [mm²/m]			517	689	862	1170		
Pos. 1 with Ø10 [mm²/m]	Balcony side	160 - 250	558	751	923	1232		
Pos. 1 with Ø12 [mm²/m]			599	813	985	1293		
Pos. 2 Steel bars along the	insulation joint							
Pos. 2	balcony side/ downstand beam, wal	160 - 250		2 • 2	• H8			
Pos. 3 Vertical reinforceme	ent							
Pos. 3 [mm ² /m] minimum reinforcement	downstand beam, wall	160 - 250	≥ 640	≥ 960	≥ 1163	≥ 1400		
Pos. 3 structural element design	downstand beam, wall	160 - 250	Taking into account th	ne moments and shea	r forces provided by th	ne structural engineer		
Pos. 4 Steel bars along the	Pos. 4 Steel bars along the insulation joint							
Pos. 4	downstand beam, wal	160 - 250	≥1ø12					
Pos. 5 splitting tension rei	nforcement							
Pos. 5 [mm²/m]	downstand beam, wal	160 - 250		1	30			

Information about on-site reinforcement

- The mixing of steel bar and wire mesh reinforcement is possible. The corresponding mesh reinforcement can be taken into account when determining the additional reinforcement.
- When reinforcing with different diameters the reinforcement specification for the largest diameter is relevant.
- The minimum reinforcement of Pos. 3 serves for the transfer of the active bar axial forces from the Isokorb[®]. This minimum reinforcement must be complied with.

The required reinforcement from the structural element design as a result of the loading of the balcony, floors, walls and the supporting width of the downstand/upstand beam is to be verified by the structural engineer. The reinforcement determined from this must be compared with the minimum reinforcement of Pos, 3.

The greater of the two values is relevant.

- Isokorb[®] height for CV35: H = 160 190 mm for downstand beam width w_{min} < 200 mm
 - H = 160 210 mm for downstand beam width w_{min} < 220 mm
 - H = 160 230 mm for downstand beam width w_{min} < 240 mm
- The required lateral reinforcement in the overlap area is to be verified according to BS EN 1992-1-1 (EC2), 8.7 to 8.8 and BS EN 1992-1-1/NA, NDPs nd NCIs to 8.7 and 8.8.
- ▶ l_0 for l_0 (Ø10) ≥ 570 mm, l_0 for l_0 (Ø12) ≥ 680 mm, l_0 (Ø14) ≥ 790 mm nd l_0 (Ø16) ≥ 910 mm.
- With the selection of the Isokorb[®] type channels and inclinations must be taken into account, in order to maintain the required concrete cover.
- For safe application of force the information with regard to the lift joint is to be complied with, see page 91.

🛕 Hazard warning - missing connection bar

For the given load-bearing capacity, the transverse reinforcement bar is absolutely necessary. This transverse reinforcement bar must be fitted directly to the anchor head.

🚺 Design example

Þ

Þ	Numerical example for stirrup	design (Pos. 3 + 5):			
	Geometry: Isoko	orb® height H = 200 mm			
	dow	nstand beam width w _{vorh} = 220 mm			
concrete cover CV30					
	Concrete strength:	C25/30			
	Internal forces from balcony:	m _{Ed} = -45.3 kNm/m			
	v _{Ed} =	35.0 kN/m			

Selected: XT type K-U-M3-V1-REI120-CV35-LR180-X120-H200-7.0

Minimum reinforcement for Pos. 3: $a_{s,min} = 11.63 \text{ cm}^2/\text{m}$ Required reinforcement from structural element design: $a_{s,req} = 5.67 \text{ cm}^2/\text{m} < 11.63 \text{ cm}^2/\text{m} = a_{s,min}$

 \Rightarrow The minimum reinforcement $a_{s,min} = 11.63 \text{ cm}^2/\text{m}$ is decisive!

Required splitting tensile reinforcement Pos. 5: $a_{s,req} = 1.30 \text{ cm}^2/\text{m}$

 \Rightarrow Required stirrup cross-section: $a_{s,req} = 11.63 \text{ cm}^2/\text{m} + 1.30 \text{ cm}^2/\text{m} = 12.93 \text{ cm}^2/\text{m}$

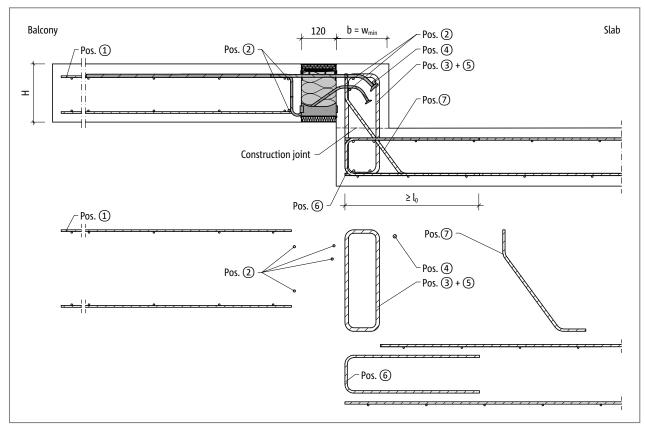


Fig. 113: Schöck Isokorb[®] XT type K-O: On-site reinforcement for balcony with height offset upwards with minimum structural element dimension ($w_{vorh} = w_{min}$)

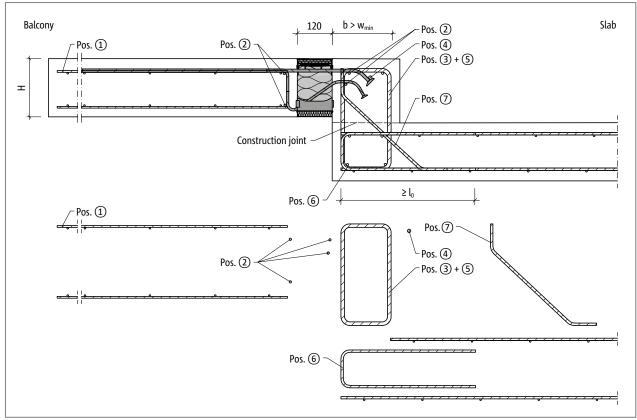


Fig. 114: Schöck Isokorb® XT type K-O: On-site reinforcement for balcony with height offset upwards with larger structural element dimension (w_{vorh} > w_{min})

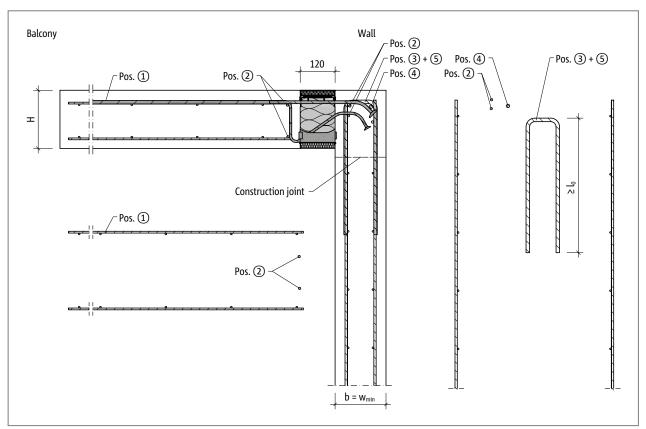


Fig. 115: Schöck Isokorb® XT type K-O: On-site reinforcement for wall connection upwards with minimum structural element dimension (wvorh = wmin)

Fig. 116: Schöck Isokorb® XT type K-O: On-site reinforcement for wall connection with larger structural element dimension ((wvorh > wmin)

Recommendation for on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; variants adapted to load-bearing level. The required reinforcement cross-section depends on the bar diameter of the steel bar or wire mesh reinforcement.

Schöck Isokort	o® XT type K-O		M1	M2	M3	M4	
On-site reinforcement	Location	Height [mm]		Downstand beam	th class ≥ C25/30 n width ≥ 175 mm ss ≥ 175 mm		
Pos. 1 overlap reinforceme	ent depending on	bar diame	eter	<u>.</u>			
Pos. 1 with Ø8 [mm ² /m]			517	689	862	1170	
Pos. 1 with Ø10 [mm²/m]	Balcony side	160 - 250	558	751	923	1232	
Pos. 1 with Ø12 [mm²/m]			599	813	985	1293	
Pos. 2 Steel bars along the	insulation joint						
Pos. 2	balcony side/ downstand beam, wall	160 - 250	2 • 2 • H8				
Pos. 3 Vertical reinforceme	ent						
Pos. 3 [mm ² /m] minimum reinforcement	downstand beam, wall	160 - 250	≥ 640	≥ 960	≥ 1163	≥ 1400	
Pos. 3 Structural component design	downstand beam, wall	160 - 250	Taking into account th	he moments and shea	r forces provided by t	he structural engineer	
Pos. 4 Steel bars along the	insulation joint						
Pos. 4	downstand beam, wall	160 - 250		≥1,	Ø 12		
Pos. 5 splitting tension rei	nforcement						
Pos. 5 [mm²/m]	downstand beam, wall	160 - 250	130				
Pos.6 Slip in bracket	Pos.6 Slip in bracket						
Pos. 6	Floor side	160 - 250	acc. to the specifications of the structural engineer				
Pos. 7 Slanting reinforcem	1						
Pos.7	Downstand beam	160 - 250	acc	. to the specifications	of the structural engir	neer	

Information about on-site reinforcement

Information about on-site reinforcement see page 90.

🛕 Hazard warning - missing connection bar

For the given load-bearing capacity, the transverse reinforcement bar is absolutely necessary. This transverse reinforcement bar must be fitted directly to the anchor head.

Information about on-site reinforcement

- The mixing of steel bar and wire mesh reinforcement is possible. The corresponding mesh reinforcement can be taken into account when determining the additional reinforcement.
- When reinforcing with different diameters the reinforcement specification for the largest diameter is relevant.
- The minimum reinforcement of Pos. 3 serves for the transfer of the active bar axial forces from the Isokorb[®]. This minimum reinforcement must be complied with.

The required reinforcement from the structural element design as a result of the loading of the balcony, floors, walls and the supporting width of the downstand/upstand beam is to be verified by the structural engineer. The reinforcement determined from this must be compared with the minimum reinforcement of Pos, 3.

The greater of the two values is relevant.

- Isokorb[®] height for CV35: H = 160 210 mm for downstand beam width w_{min} < 190 mm
 - H = 160 230 mm for downstand beam width w_{min} < 210 mm
- Pos. 3 and Pos. 5 are to be brought as close as possible over the tension bar of the Schöck Isokorb[®]. The distance between the on-site stirrup reinforcement and the upper edge of the tension bar is smaller than 2 cm.
- The required lateral reinforcement in the overlap area is to be verified according to BS EN 1992-1-1 (EC2), 8.7 to 8.8 and BS EN 1992-1-1/NA, NDPs nd NCIs to 8.7 and 8.8.
- ▶ l_0 for l_0 (Ø10) ≥ 570 mm, l_0 for l_0 (Ø12) ≥ 680 mm, l_0 (Ø14) ≥ 790 mm nd l_0 (Ø16) ≥ 910 mm.
- With the selection of the Isokorb[®] type channels and inclinations must be taken into account, in order to maintain the required concrete cover.
- For safe application of force the information with regard to the lift joint is to be complied with, see page 91.

\rm A Hazard warning - missing connection bar

For the given load-bearing capacity, the transverse reinforcement bar is absolutely necessary. This transverse reinforcement bar must be fitted directly to the anchor head.

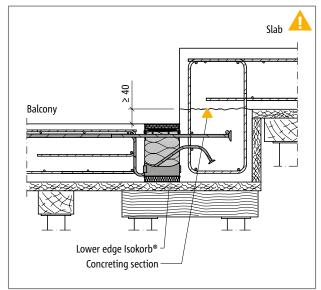
🚺 Design example

Numerical example for stirrup design (Pos. 3 + 5):

Geometry:	Isokorb [®] height H = 230 mm	
	downstand beam width w _{vorh} = 175 r	nm
	concrete cover CV30	
Concrete strength:	C25/30	
Internal forces from b	alcony: m _{Ed} = -69.2 kNm/m	
	v _{Ed} = 21.6 kN/m	

Selected: XT type K-O-M4-V1-REI120-CV50-LR145-X120-H230-7.0

Minimum reinforcement for Pos. 3: $a_{s,min} = 14.00 \text{ cm}^2/\text{m}$ Required reinforcement from structural element design: $a_{s,req} = 14.46 \text{ cm}^2/\text{m} > 14.00 \text{ cm}^2/\text{m} = a_{s,min}$


 \Rightarrow The required reinforcement from bending design $a_{s,req} = 14.46 \text{ cm}^2/\text{m}$ is relevant!

Required splitting tensile reinforcement Pos. 5: $a_{s,req} = 1.30 \text{ cm}^2/\text{m}$

 \Rightarrow Required stirrup cross-section: $a_{s,req} = 14.46 \text{ cm}^2/\text{m} + 1.30 \text{ cm}^2/\text{m} = 15.76 \text{ cm}^2/\text{m}$

Tight fit/Concreting section | Installation instructions

Tight fit/Concreting section

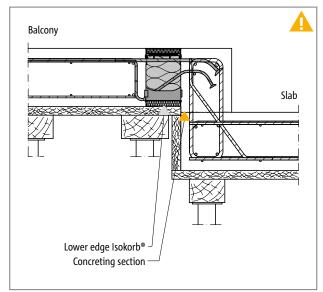


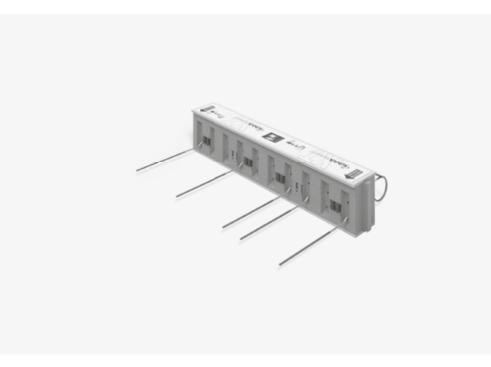
Fig. 117: Schöck Isokorb® XT type K-U: In-situ concrete balcony with height offset downwards

Fig. 118: Schöck Isokorb[®] XT type K-O: In-situ concrete balcony with height offset upwards

A Hazard note: Tight fit with different height levels

The tight fit of the pressure bearings to the freshly poured concrete is to be ensured, therefore the upper edge of the masonry respectively of the concreting section is to be arranged below the lower edge of the Schöck Isokorb[®]. This is to be taken into account above all with a different height level between inner slab and balcony.

- ▶ The concreting joint and the upper edge of the masonry are to be arranged below the lower edge of the Schöck Isokorb®.
- > The position of the concreting section is to be indicated in the formwork and reinforcement drawing.
- ▶ The joint planning is to be coordinated between precast concrete plant and construction site.


Installation instructions

> Download further installation instructions under www.schoeck.de/de/download

🗹 Check list

- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- Has the additional proportionate deflection resulting from the Schöck Isokorb[®] been taken into account?
- □ Is the drainage direction taken into account with the resulting camber information? Is the degree of camber entered in the working drawings?
- □ Is the increased minimum slab thickness taken into account with CV50?
- Are the recommendations for the limitation of the slenderness observed?
- Are the maximum allowable expansion joint spacings taken into account?
- Are the Schöck FEM guidelines taken into account with the calculation using FEM?
- With the selection of the design table is the relevant concrete cover taken into account?
- Have existing horizontal loads e.g. from wind pressure, been taken into account as planned? Are additional Schöck Isokorb® XT type H required for this?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- With the XT type K-U, K-O in conjunction with prefabricated floors is the insitu concrete strip required in the compression joint (width ≥ 100 mm from pressure element) plotted in the implementation plans?
- Is the required component geometry present with the connection to a floor or a wall? Is a special design required?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- □ Is the on-site supplementary bar (Pos. 4) incorporated?
- With precast balconies are possibly necessary gaps for the front side transportation anchors and downpipes with internal drainage taken into account? Is the maximum centre distance of 300 mm for the Isokorb[®] bars observed?

Schöck Isokorb® XT type Q, Q-VV, Q-Z

Schöck Isokorb[®] XT type Q Suitable for supported balconies. It transfers positive shear forces.

Schöck Isokorb[®] XT type Q-VV Suitable for supported balconies. It transfers positive and negative shear forces.

Schöck Isokorb[®] XT type Q-Z

Suitable for supported balconies with connection free of constraint forces. It transfers positive shear forces.

Element arrangement

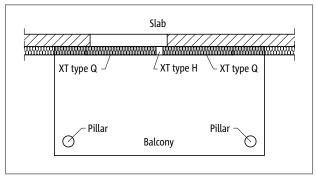


Fig. 119: Schöck Isokorb® XT type Q: Balcony with column support

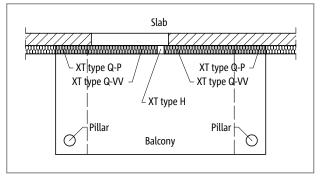


Fig. 120: Schöck Isokorb® XT type Q-P, Q-VV: Balcony with pillar support with different support stiffnesses; optionally with XT type H for the transmission of planned horizontal force

Installation cross sections

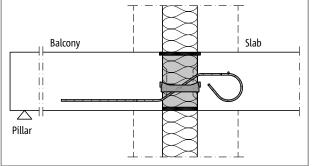


Fig. 121: Schöck Isokorb® XT type Q: Connection with non-load-bearing double wall masonry (XT type Q-V1 to V4)

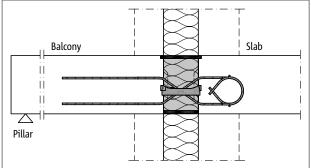


Fig. 123: Schöck Isokorb® XT Type Q: Connection with non-load-bearing cavity masonry

Fig. 125: Schöck Isokorb® XT type Q: Connection with double wall masonry

Balcony

with core insulation (XT type Q-V5 to V8)

 \bigtriangleup Pillar



Fig. 122: Schöck Isokorb® XT type Q: Connection with non-load-bearing dou-

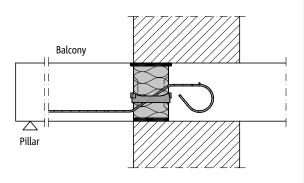


Fig. 124: Schöck Isokorb® XT type Q: Connection with single wall, thermally insulating masonry (XT type Q-V1 to V4)

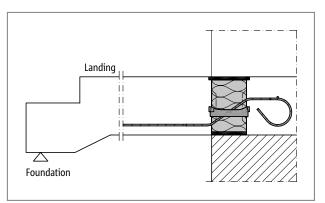
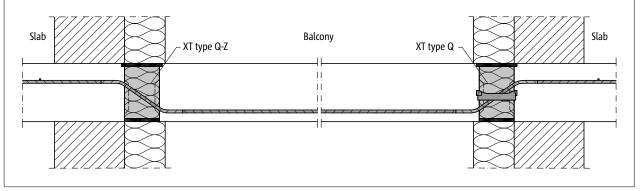
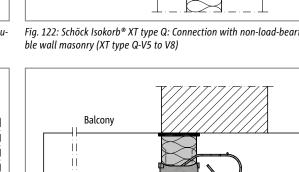




Fig. 126: Schöck Isokorb® XT type Q: Connection stair landing with single wall thermally insulating masonry (XT type Q-V1 to V4)

Slab

Fig. 127: Schöck Isokorb® XT type Q, Q-Z: Application case single direction tensioned reinforced concrete slab

Product selection | Type designations | Special designs

Schöck Isokorb® XT type Q, Q-VV, Q-Z variants

The configuration of the Schöck Isokorb® XT types Q, Q-VV, Q-Z can vary as follows:

XT type Q: Shear force bar for positive shear force

XT type Q-VV: Shear force bar for positive and negative shear force

XT type Q-Z: Constraint-free without pressure bearing, shear force bar for positive shear force

Main load-bearing level:

V1 to V8

VV1 to VV8

Main load-bearing levels V1 to V4: Shear force bar on floor side bent, balcony side straight.

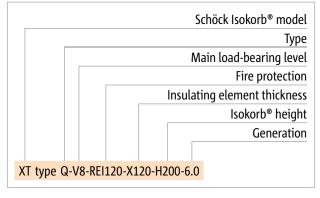
Main load-bearing levels V5 to V8: Shear force bar on floor side straight, balcony side straight.

Fire resistance class:

REI120 (Standard): Projection upper fire protection board, both sides 10 mm

Concrete cover of the shear force bars: Below: CV ≥ 30 mm

Above: $CV \ge 27 \text{ mm}$ (depending on height of shear force bars)


- Insulating element thickness:
- X120 = 120 mm

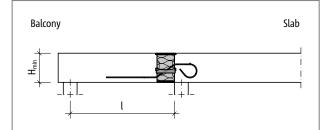
Isokorb® height:

- H = H_{min} to 250 mm (take into account minimum slab height depending on load-bearing level and fire protection)
- Generation:

6.0

Type designations in planning documents

📒 Special designs


Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

In accordance with approval heights up to 500 mm are possible.

This also applies with additional requirements as a result of precast concrete construction. For additional requirements determined by manufacturing or transportation there are solutions available with coupler bars.

C25/30 design

Schöck Isokorb [®] XT type Q	V1	V2	V3	V4	V5	V6	V7	V8
Design values with				V _{Rd,z} [«N/m]			
Concrete C25/30	35.3	42.3	56.4	70.5	87.7	97.9	117.5	137.1
Isokorb® length [mm]	1000	1000	1000	1000	1000	1000	1000	1000
Shear force bars	5Ø6	6Ø6	8Ø6	10 Ø 6	7Ø8	5ø10	6ø10	7ø10
Pressure bearing (piece)	4	4	4	4	4	4	5	6
H _{min} width REI120 [mm]	160	160	160	160	170	180	180	180



Fig. 128: Schöck Isokorb® XT type Q: Static system (XT type Q-V1 to V4)

Fig. 129: Schöck Isokorb® XT type Q: Static system (XT type Q-V5 to V8)

Schöck Isokorb® XT type Q-Z	V1	V2	V3	V4	V5	V6	V7	V8
Design values with	v _{rd,z} [kN/m]							
Concrete C25/30	35.3	42.3	56.4	70.5	87.7	97.9	117.5	137.1

Isokorb® length [mm]	1000	1000	1000	1000	1000	1000	1000	1000
Shear force bars	5Ø6	6Ø6	8Ø6	10 Ø 6	7Ø8	5ø10	6 Ø 10	7ø10
Pressure bearing (piece)	-	-	-	-	-	-	-	-
H _{min} width REI120 [mm]	160	160	160	160	170	180	180	180

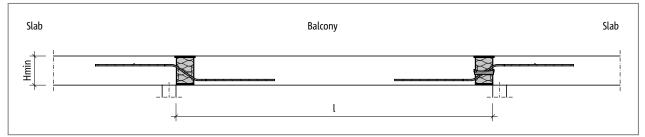


Fig. 130: Schöck Isokorb® XT type Q-Z, Q: Static system (XT type Q-Z-V5 to Q-Z-V8, Q-V5 to Q-V8)

C25/30 design

Schöck Isokorb® XT type Q	VV1	VV2	VV3	VV4					
Design values with		v _{rd,z} [kN/m]							
Concrete C25/30	±35.3	±42.3	±56.4	±70.5					
Isokorb® length [mm]	1000	1000	1000	1000					
Shear force bars	5ø6+5ø6	6Ø6+6Ø6	8Ø6+8Ø6	10 Ø 6 + 10 Ø 6					
Pressure bearing (piece)	4	4	4	4					
H _{min} width REI120 [mm]	160	160	160	160					

Schöck Isokorb® XT type Q	VV5	VV6	VV7	VV8		
Design values with	v _{rd,z} [kN/m]					
Concrete C25/30	±87.8	±97.9	±117.5	±137.1		

Isokorb® length [mm]	1000	1000	1000	1000
Shear force bars	7ø8+7ø8	5 Ø 10 + 5 Ø 10	6 Ø 10 + 6 Ø 10	7 Ø 10 + 7 Ø 10
Pressure bearing (piece)	4	4	5	6
H _{min} width REI120 [mm]	170	180	180	180

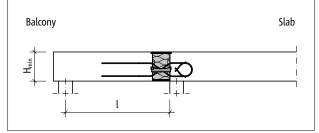


Fig. 131: Schöck Isokorb® XT type Q-VV: Static system (XT type Q-VV1 to VV4)

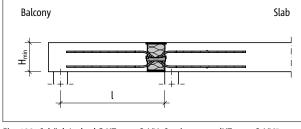
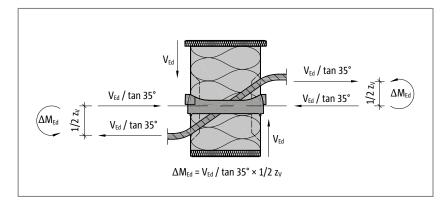


Fig. 132: Schöck Isokorb® XT type Q-VV: Static system (XT type Q-VV5 to VV8)

Notes on design


- The shear force loading of the slabs in the area of the insulation joint is to be limited to $V_{Rd, max}$, whereby $V_{Rd, max}$, acc. to BS EN 1992-1-1 (EC2), Exp. (6.9) is determined for θ = 45 ° and α = 90 ° (slab load-bearing capacity).
- A structural analysiis is to be produced for the reinforced concrete structural components adjacent on both sides of the Schöck Isokorb[®]. With a connection using Schöck Isokorb[®] XT type Q as static system, a freely rotating support (pin connection) is to be adopted.
- Additional Schöck Isokorb[®] XT type H are required for the transmission of scheduled horizontal forces.
- Due to the eccentric force application of the Schöck Isokorb[®] XT type Q and XT type Q-VV, an offset moment results on the adjacent slab edge. This is to be taken into account with the design of the slabs.
- ▶ The Schöck Isokorb[®] XT type Q-VV is also available as XT type Q-Z-VV variant.
- With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.

Moments from excentric connection

Moments from excentric connection

Moments from excentric connection are to be taken into account for the design of the reinforcement connection on both sides of the shear force transfering Schöck Isokorb[®] XT types Q and Q-VV. These moments are to be respectively overlaid with the moments from the ordinary loading if they have the same sign.

The following table values ΔM_{Ed} have been calculated with 100% utilisation of v_{Rd} .

Schöck Isokorb® XT type Q	V1, VV1	V2, VV2	V3, VV3	V4, VV4			
Design values with		Δ M _{ed} [kNm/m]					
Concrete C25/30	2.2	2.7	3.6	4.5			

Schöck Isokorb® XT type Q	V5, VV5	V6, VV6	V7, VV7	V8, VV8				
Design values with		Δ M _{ed} [kNm/m]						
Concrete C25/30	5.9	7.1	8.6	10.0				

Expansion joint spacing

Maximum expansion joint spacing

If the structural element length exceeds the maximum expansion joint spacing e, expansion joints must be installed in the outer lying concrete structural elements at right angles to the insulation plane, in order to limit the impacts as a result of temperature changes. For fixed points such as corners of balconies, parapets and balustrades or when using the Schöck Isokorb[®] XT types H, half the maximum expansion joint spacing e/2 applies out from th fixed point.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

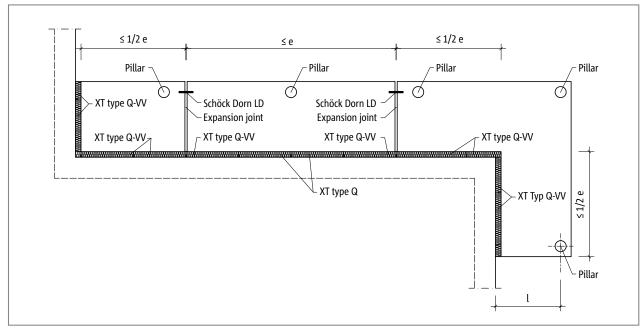


Fig. 133: Schöck Isokorb® XT type Q, Q-VV: Expansion joint arrangement

Schöck Isokorb® XT type Q, Q-Z	2	V1 - V5 VV1 - VV5	V6 - V8 VV6 - VV8		
Maximum expansion joint spacing		e [m]			
Insulating element thickness [mm]	120	23.0	21.7		

Edge distances

The Schöck Isokorb® must be so arranged at the expansion joint that the following conditions are met:

For the centre distance of the compression elements from the free edge or from the expansion joint: $e_R \ge 50$ mm applies.

For the centre distance of the shear force bars from the free edge or from the expansion joint: $e_R \ge 100$ mm and $e_R \le 150$ mm applies.

XT type Q

Product description

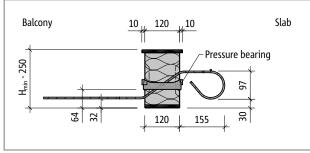


Fig. 134: Schöck Isokorb® XT type Q-V1 to Q-V4: Product section

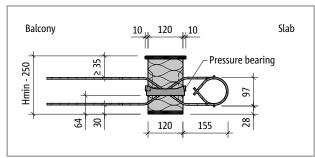


Fig. 136: Schöck Isokorb® XT type Q-VV1 to Q-VV4: Product section

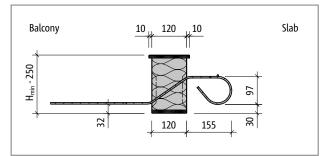


Fig. 138: Schöck Isokorb® XT type Q-Z-V1 to Q-Z-V4: Product section

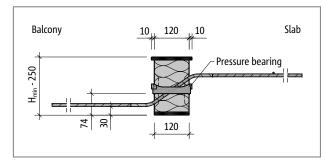


Fig. 135: Schöck Isokorb® XT type Q-V5 to Q-V8: Product section

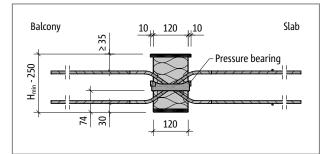


Fig. 137: Schöck Isokorb® XT type Q-VV5 to Q-VV8: Product section

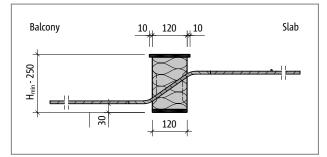
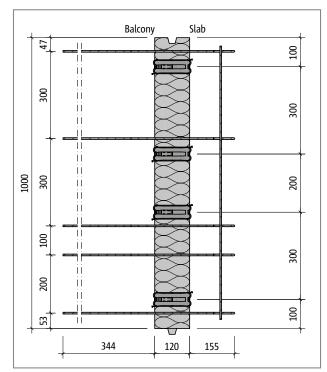



Fig. 139: Schöck Isokorb® XT type Q-Z-V5 to Q-Z-V8: Product section

XT type Q

Product description

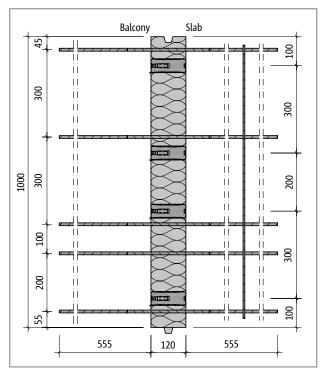


Fig. 140: Schöck Isokorb® XT type Q-V1: Product plan view

Fig. 141: Schöck Isokorb® XT type Q-V6: Product plan view

Product information

- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Observe minimum height_{min} Schöck Isokorb[®] XT type Q, Q-VV and Q-Z.

On-site reinforcement

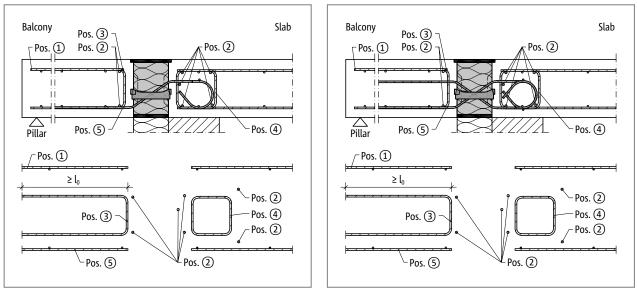


Fig. 142: Schöck Isokorb® XT type Q-V1 to V4: On-site reinforcement

Fig. 143: Schöck Isokorb® XT type Q-VV1 to VV4: On-site reinforcement

The reinforcement in the reinforced concrete slab is determined from the structural engineer's design. With this both the effective moment and the effective shear force should be taken into account.

In addition, it is to be ensured that the shear force bars of the Schöck Isokorb[®] are 100% lapped, insofar as they lie in the tension zone.

Schöck Isokorb® XT type Q, Q-Z			V1, VV1	V2, VV2	V3, VV3	V4, VV4		
On-site reinforcement	Concrete strength	Location	Concrete strength class ≥ C25/30					
Pos. 1 Lapping reinforcement								
Pos. 1		Balcony side	acc. to the specifications of the structural engineer					
Pos. 2 Steel bars along the insulation joint								
Pos. 2		Balcony side	2 • H8	2 • H8	2 • H8	2 • H8		
Pos. 2		Floor side	5 • H8	5 • H8	5 • H8	5 • H8		
Pos. 3 Stirrup								
Pos. 3 [mm²/m]	C25/30	Balcony side	81	97	130	162		
Pos. 4 Closed stirrup (edge beam according to Z-15.7-240)								
Pos. 4 [mm²/m]		Floor side	141	141	141	141		
Pos. 4		Floor side	H8@200	H8@200	H8@200	H8@200		
Pos. 5 Lapping reinforcement								
Pos. 5		Balcony side	necessary in the tension zone, as specified by the structural engineer					
Pos. 6 Side reinforcement at the free edge								
Pos. 6			Edging as per BS EN 1992-1-1 (EC2), 9.3.1.4 (not pictured)					

Information about on-site reinforcement

- Lapping of the reinforcement in the connecting reinforced concrete components must be applied as close as possible to the insulating element of the Schöck Isokorb[®], the required concrete cover must be observed.
- The shear force bars are to be anchored with their straight ends in the pressure zone. In the tension zone the shear force bars are to be lapped.
- The structural edging Pos. 6 should be selected so low that it can be arranged between the upper and lower reinforcement position.
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.

On-site reinforcement

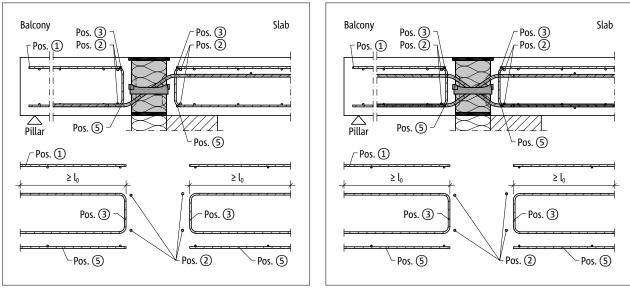
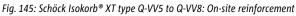
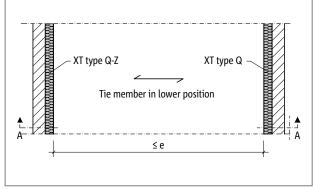



Fig. 144: Schöck Isokorb® XT type Q-V5 to Q-V8: On-site reinforcement


The reinforcement in the reinforced concrete slab is determined from the structural engineer's design. With this both the effective moment and the effective shear force should be taken into account.

In addition, it is to be ensured that the shear force bars of the Schöck Isokorb® are 100% lapped, insofar as they lie in the tension zone.

Schöck Isokorb® XT type Q, Q-Z			V5, VV5	V6, VV6	V7, VV7	V8, VV8		
On-site reinforcement	Concrete strength	Location	Concrete strength class ≥ C25/30					
Pos. 1 Lapping reinforcement								
Pos. 1		Balcony/floor side	acc. to the specifications of the structural engineer					
Pos. 2 Steel bars along the insulation joint								
Pos. 2		Balcony/floor side	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8		
Pos. 3 Stirrup								
Pos. 3 [mm ² /m]	C25/30	Balcony/floor side	202	225	270	315		
Pos. 5 Lapping reinforcement								
Pos. 5		Balcony/floor side	necessary in the tension zone, as specified by the structural engineer					
Pos. 6 Side reinforcement at the free edge								
Pos. 6			Edging as per BS EN 1992-1-1 (EC2), 9.3.1.4 (not pictured)					

Information about on-site reinforcement

- Lapping of the reinforcement in the connecting reinforced concrete components must be applied as close as possible to the insulating element of the Schöck Isokorb[®], the required concrete cover must be observed.
- The shear force bars are to be anchored with their straight ends in the pressure zone. In the tension zone the shear force bars are to be lapped.
- The structural edging Pos. 6 should be selected so low that it can be arranged between the upper and lower reinforcement position.
- The indicative minimum concrete strength class of the external structural component is C32/40.

Application example reinforced concrete slab spanning in one direction

Fig. 146: Schöck Isokorb® XT type Q-Z, Q: One-way spanning reinforced concrete slab

An XT type Q-Z without pressure bearing is to be arranged on one side for support free of constraint. On the opposite side an XT type Q with pressure bearing is then required. In order to maintain the balance of forces a tie member is to reinforce between XT type Q-Z and XT type Q, which overlaps with shear force transmitting Isokorb[®]-bars.

Expansion joints

Expansion joint spacing e see page 101

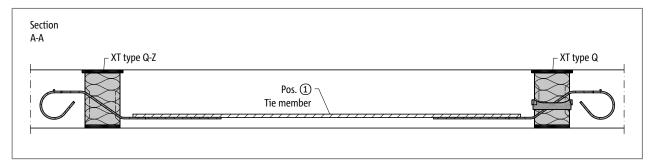


Fig. 147: Schöck Isokorb® XT type Q-Z-V1 to Q-Z-V4, Q-V1 to Q-V4: Section A-A; one direction spanned reinforced concrete slab

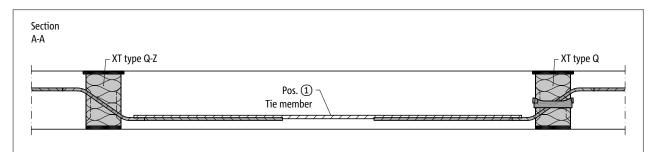


Fig. 148: Schöck Isokorb® XT type Q-Z-V5 to Q-Z-V8, Q-V5 to Q-V8: Section A-A; one direction spanned reinforced concrete slab

Schöck Isokorb® XT type Q, Q-Z	V1	V2	V3	V4	V5	V6	V7	V8
On-site reinforcement	Concrete strength class ≥ C25/30							
Pos. 1 Tie								
Pos. 1	5 • H8	6•H8	8 • H8	10•H8	7 • H8	5•H10	6•H10	7•H10

Information about on-site reinforcement

The required suspension reinforcement and the on-site slab reinforcement are not shown here.

On-site reinforcement analogue to Schöck Isokorb® XT type Q see page 104

Slab

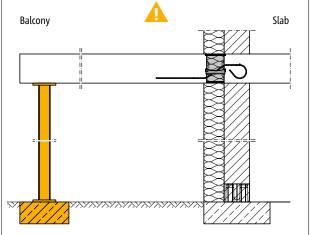
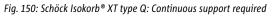



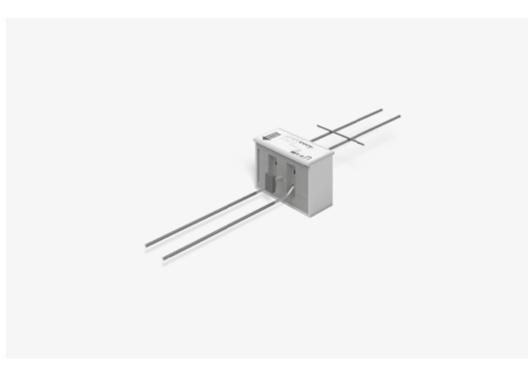
Fig. 149: Schöck Isokorb[®] XT type Q: Continuous support required

Δ

Supported balcony

The Schöck Isokorb[®] XT type Q, Q-VV and Q-Z is developed for supported balconies. It transfers exclusively shear forces, no bending moments.

Balcony


\rm Marning - omitting the pillars

- The balcony will collapse if not supported.
- At all stages of construction, the balcony must be supported with statically suitable pillars or supports.
- Even when completed, the balcony must be supported with statically suitable pillars or supports.
- A removal of temporary support is permitted only after installation of the final support.

🗹 Check list

- Has the Schöck Isokorb® type matching the static system been selected? XT type Q counts as pure shear force connection (pin connection).
- □ Is the danger notice for missing support entered in the implementation plans?
- Is the balcony so planned that a continuous support is ensured in all stages of construction and in the final status?
- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- Are the Schöck FEM guidelines taken into account with the calculation using FEM?
- With the selection of the design table is the relevant concrete strength class taken into account?
- □ Is the minimum slab thickness taken into consideration with Schöck Isokorb[®] types in fire protection configuration?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- Are the maximum allowable expansion joint spacings taken into account?
- Is the required component geometry present with the connection to a floor or a wall? Is a special design required?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Have existing horizontal loads e.g. from wind pressure, been taken into account as planned? Are additional Schöck Isokorb[®] XT type H required for this?
- With precast balconies are possibly necessary gaps for the front side transportation anchors and downpipes with internal drainage taken into account? Is the maximum centre distance of 300 mm for the Isokorb® bars observed?
- With 2- or 3-sided support is a Schöck Isokorb[®] selected for a connection free of constraint selected (possibly XT type Q-Z, XT type Q-PZ)?

Schöck Isokorb® XT type Q-P, Q-P-VV, Q-PZ

Schöck Isokorb® XT type Q-P (shear force)

suitable for load peaks with supported balconies. It transmits positive shear forces.

Schöck Isokorb® XT type Q-P-VV (shear force)

Suitable for load peaks with supported balconies. It transmits positive and negative shear forces.

Schöck Isokorb® XT type Q-PZ (shear force constraint free)

Suitable for peak loads with supported balconies with connection free of constraint. It transmits positive shear forces.

Element arrangement | Installation cross section

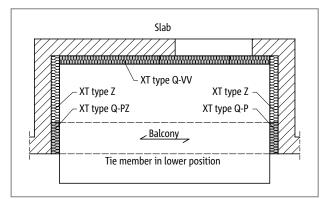


Fig. 151: Schöck Isokorb® XT type Q-VV, Q-P, Q-PZ: Recessed balcony, supported on three sides with tie member

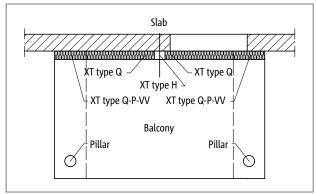


Fig. 153: Schöck Isokorb[®] XT type Q-P-VV, Q: Balcony with column support with various bearing stiffnesses; optionally with XT type H for transmission of ordinary horizontal force

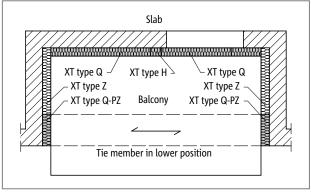


Fig. 152: Schöck Isokorb® XT type Q, Q-PZ: Recessed balcony, supported on three sides - symmetric with tie member

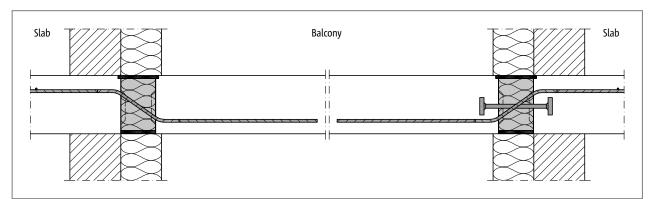


Fig. 154: Schöck Isokorb[®] XT type Q-P, Q-PZ: Application case recessed balcony see p. 119

Product selection | Type designations | Special designs

Schöck Isokorb® XT type Q-P, Q-P-VV, Q-PZ variants

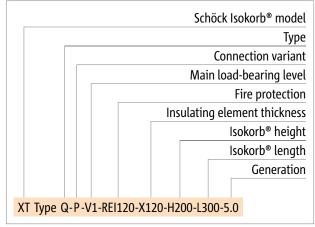
The configuration of the Schöck Isokorb® XT types Q-P, Q-P-VV, Q-PZ variants can vary as follows: For all load-bearing levels shear force bar on floor side straight, on balcony side straight applies.

XT type Q-P: Shear force bar for positive shear force

XT type Q-P-VV: Shear fore bar for positive and negative shear force

XT type Q-PZ: Free of constraint without pressure bearing, shear force bar for positive shear force

- Connection variant: P puntual
- Main load-bearing level:


V1 to V9

- VV1 to VV9
- Fire resistance class:
- REI120 (Standard): Projection upper fire protection board, both sides 10 mm
- Concrete cover:
- bottom: CV = 40 mm

top: $\text{CV} \ge 28 \text{ mm}$ (depending on height of the shear force bars)

- Insulating element thickness:
- X120 = 120 mm
- Isokorb[®] height:
 - $H = H_{min}$ to 250 mm (take note of minimum slab height depending on load-bearing level and fire protection)
- Isokorb[®] length:
 - L = 300 to 500 mm
- Generation:
 - 5.0

Type designations in planning documents

📒 Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

In accordance with approval heights up to 500 mm are possible.

This also applies with additional requirements as a result of precast concrete construction. For additional requirements determined by manufacturing or transportation there are solutions available with coupler bars.

C25/30 design

Schöck Isokorb® XT type Q-P	V1	V2	V3	V4	V5	V6	V7	V8	V9
Design values with				V _{Rd,z}	[kN/elem	ent]			
Concrete C25/30	34.5	58.8	68.9	56.4	68.9	68.9	92.0	115.2	137.8
						^			
Isokorb® length [mm]	300	400	500	300	400	300	400	400	500
Shear force bars	2ø10	3ø10	4ø10	2ø12	3ø12	2ø14	3ø14	3ø14	4ø14
Pressure bearing (piece)	1ø14	2 Ø 12	2ø14	2ø12	2ø14	2ø14	3ø12	4 Ø 12	4 Ø 14
H _{min} width REI120 [mm]	190	190	190	200	200	210	210	210	210

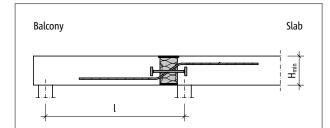


Fig. 155: Schöck Isokorb® XT type Q-P: Static system

Schöck Isokorb® XT type Q-PZ	V1	V2	V3	V4	V5	V6	V7	V8	V9
Design values with				V _{Rd,z}	[kN/elem	ent]			
Concrete C25/30	34.5	58.8	68.9	56.4	68.9	68.9	115.2	115.2	137.8

Isokorb® length [mm]	300	400	500	300	400	300	400	400	500
Shear force bars	2ø10	3ø10	4 Ø 10	2 Ø 12	3ø12	2 Ø 14	3 Ø 14	3 Ø 14	4 Ø 14
Pressure bearing (piece)	-	-	-	-	-	-	-	-	-
H _{min} width REI120 [mm]	190	190	190	200	200	210	210	210	210

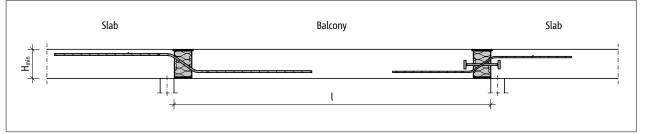


Fig. 156: Schöck Isokorb® XT type Q-PZ, Q-P: Static system

C25/30 design

Schöck Isokorb® XT type Q-P	VV1	VV2	VV3	VV4	VV5
Design values with			V _{Rd,z} [kN/element]		
Concrete C25/30	±34.5	±58.8	±68.9	±56.4	±68.9
Isokorb® length [mm]	300	400	500	300	400
Shear force bars	2 x 2 Ø 10	2 x 3 Ø 10	2 x 4 Ø 10	2 x 2 Ø 12	2 x 3 Ø 12
Pressure bearing (piece)	1 Ø 14	2 Ø 12	2 Ø 14	2 Ø 12	2 Ø 14
H _{min} width REI120 [mm]	190	190	190	200	200

Schöck Isokorb [®] XT type Q-P	VV6	VV7	VV8	VV9
Design values with		V _{Rd,z} [kN/	element]	
Concrete C25/30	±68.9	±92.0	±115.2	±137.8

Isokorb® length [mm]	300	400	400	500
Shear force bars	2 x 2 Ø 14	2 x 3 Ø 14	2 x 3 Ø 14	2 x 4 Ø 14
Pressure bearing (piece)	2 Ø 14	3 Ø 12	4 Ø 12	4 Ø 14
H _{min} width REI120 [mm]	210	210	210	210

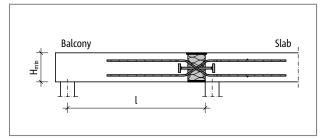
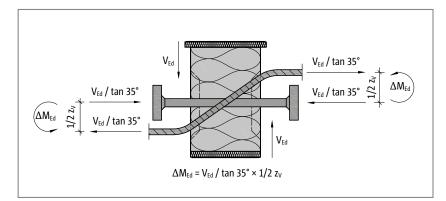


Fig. 157: Schöck Isokorb® XT type Q-P-VV: Static system

Notes on design


- Additional Schöck Isokorb® XT type H are required for the transmission of scheduled horizontal forces.
- The shear force loading of the slabs in the area of the insulation joint is to be limited to $V_{Rd, max}$, whereby $V_{Rd, max}$, acc. to BS EN 1992-1-1 (EC2), Exp. (6.9) is determined for θ = 45 ° and α = 90 ° (slab load-bearing capacity).
- A structural calculation is to be producedo be provided for the reinforced concrete elements adjacent on both sides of the Schöck Isokorb[®]. For a connection using Schöck Isokorb[®] XT type Q-P and XT type Q-P-VV ia freely rotatable support (pin connection) is to be assumed.
- The Schöck Isokorb® XT type Q-PZ requires a reinforcing tie member in the lower position for constraint-free connection. Select A_{s,req} corresponding to application example recessed balcony page 119.
- ▶ The Schöck Isokorb[®] XT type Q-P-VV is also available as variant XT type Q-PZ-VV.
- ▶ With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.

Design

Moments for eccentric connection

Moments from eccentric connection are to be taken into account for the design of the connection reinforcement on both sides of the shear force transmitting Schöck Isokorb[®] XT types Q-P and Q-P-VV. These moments are in each case to be overlaid with the moments from planned loading if they have the same sign.

The following table values ΔM_{Ed} have been calculated with 100% utilisation V_{Rd} with a lever arm of $z_{v,max}$ = 140 mm.

Schöck Isokorb® XT type Q-P	V1, VV1	V2, VV2	V3, VV3	V4, VV4	V5, VV5
Design values with			∆ M _{Ed} [kNm/Element]	
Concrete C25/30	2.6	4.3	5.1	4.4	5.5

Schöck Isokorb® XT type Q-P	V6, VV6	V7, VV7	V8, VV8	V9, VV9
Design values with		Δ M _{Ed} [kNn	n/Element]	
Concrete C25/30	5.8	7.6	9.5	11.6

Expansion joint spacing

Maximum expansion joint spacing

If the length of the structural component length exceeds the maximum expansion joint spacing e, then the expansion joints must be integrated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. With fixed points such as, for example, balcony corners or with the employment of the Schöck Isokorb[®] XT types H, half the maximum expansion joint spacing e/2 applies.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

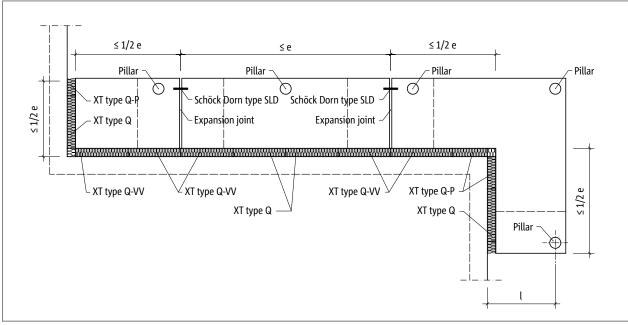


Fig. 158: Schöck Isokorb® XT type Q-P, Q-P-VV: Expansion joint arrangement

Schöck Isokorb® XT type Q-P		V1, VV1	V2, VV2	V3, VV3	V4, VV4
Maximum expansion joint space	ng		e [m]	
Insulating element thickness [mm]	120	17.0	19.5	17.0	17.7

Schöck Isokorb® XT type Q-P		V5, VV5	V6 - V9, VV6 - VV9	
Maximum expansion joint space	ng	g e [m]		
Insulating element thickness [mm]	120	17.0	15.3	

Schöck Isokorb® XT type Q-PZ		V1 - V3	V4	V5	V6 - V9
Maximum expansion joint space	ng		e [m]	
Insulating element thickness [mm]	120	19.5	17.7	17.7	15.3

Edge distances

The Schöck Isokorb[®] must be so arranged at the expansion joint that the following conditions are met:

For the centre distance of the compression elements from the free edge or from the expansion joint: $e_R \ge 50$ mm applies.

For the centre distance of the shear force bars from the free edge or from the expansion joint: $e_R \ge 100$ mm and $e_R \le 150$ mm applies.

Product description

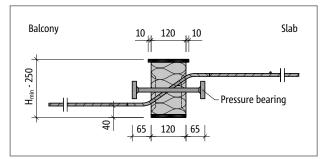


Fig. 159: Schöck Isokorb® XT type Q-P: Product section

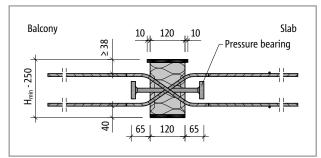


Fig. 161: Schöck Isokorb® XT type Q-P-VV1: Product section

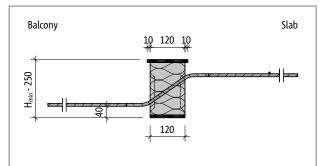


Fig. 163: Schöck Isokorb® XT type Q-PZ: Product section

Product information

- Observe minimum height H_{min} Schöck Isokorb[®] XT type Q-P, Q-P-VV, Q-PZ.
- > The length of the Schöck Isokorb® varies dependent on the load-bearing level.
- ▶ The upper fire protection board projects on both sides of the Schöck Isokorb[®] by 10 mm.
- > Download further product plan views and cross-sections at www.schoeck.co.uk/download

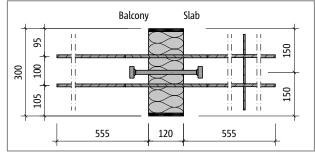


Fig. 160: Schöck Isokorb® XT type Q-P-V1: Product plan view

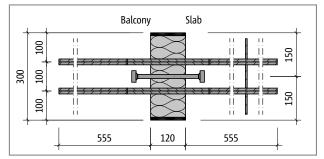


Fig. 162: Schöck Isokorb® XT type Q-P-VV1: Product plan view

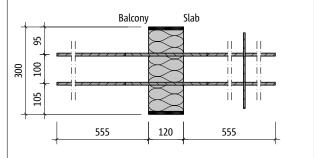
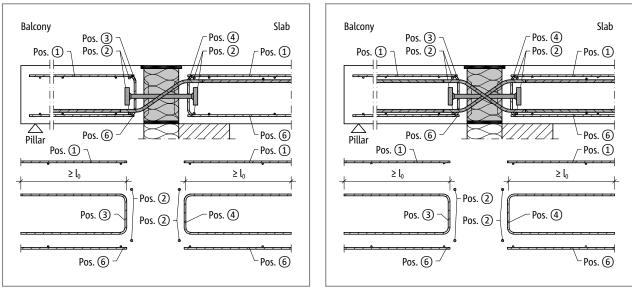



Fig. 164: Schöck Isokorb® XT type Q-PZ-V1: Product plan view

XT type Q-P

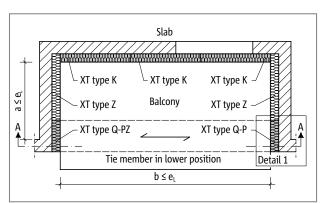
On-site reinforcement - In-situ concrete construction

Fig. 165: Schöck Isokorb® XT type Q-P: On-site reinforcement

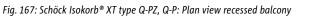
Fig. 166: Schöck Isokorb® XT type Q-P-VV: On-site reinforcement

The reinforcement in the reinforced concrete slab is determined from the structural engineer's design. With this both the effective moment and the effective shear force should be taken into account.

In addition, it is to be ensured that the shear force bars of the Schöck Isokorb® are 100% lapped, insofar as they lie in the tension zone.


Information about on-site reinforcement

- Lapping of the reinforcement in the connecting reinforced concrete components must be applied as close as possible to the insulating element of the Schöck Isokorb[®], the required concrete cover must be observed.
- The side reinforcement Pos. 5 should be selected so low that it can be arranged between the upper and lower reinforcement position.
- The Schöck Isokorb® XT type Q-PZ requires a reinforcing tie member in the lower position for constraint-free connection. Select A_{s,req} corresponding to application example recessed balcony page 119.
- The shear force bars are to be anchored with their straight ends in the pressure zone. In the tension zone the shear force bars are to be lapped.
- The indicative minimum concrete strength class of the external structural component is C32/40.


On-site reinforcement - In-situ concrete construction

Schöck Isc	Schöck Isokorb® XT type Q-P, Q-PZ			V2, VV2	V3, VV3	V4, VV4	V5, VV5
On-site reinforcement	Concrete strength	Location		Concret	e strength class ≥	C25/30	
Pos. 1 Lapping reir	nforcement						
Pos. 1		Balcony/floor side	e acc. to the specifications of the structural engineer				
Pos. 2 Steel bars a	long the insu	ulation joint					
Pos. 2		Balcony/floor side	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8
Pos. 3 Stirrup							
Pos. 3 [mm²/Element]	C25/30	Balcony side	79	135	158	130	158
Pos. 4 Slip-in brack	æt						
Pos. 4		Floor side	posi	tive, according to i	nformation from t	the structural engi	ineer
Pos. 5 Side reinfor	cement at th	e free edge					
Pos. 5			Edging as per BS EN 1992-1-1 (EC2), 9.3.1.4 (not pictured)				
Pos. 6 Lapping reir	nforcement						
Pos. 6		Balcony/floor side	necessa	ary in the tension z	one, as specified l	by the structural e	ngineer

Schöck Iso	okorb® XT ty	pe Q-P, Q-PZ	V6, VV6	V7, VV7	V8, VV8	V9, VV9				
On-site reinforcement	Concrete strength	Location	Concrete strength class ≥ C25/30							
Pos. 1 Lapping rein	nforcement									
Pos. 1		Balcony/floor side	асс	to the specifications of	of the structural engin	eer				
Pos. 2 Steel bars a	Pos. 2 Steel bars along the insulation joint									
Pos. 2		Balcony/floor side	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8				
Pos. 3 Stirrup	Pos. 3 Stirrup									
Pos. 3 [mm²/Element]	C25/30	Balcony side	158	212	265	317				
Pos. 4 Slip-in brack	ket									
Pos. 4		Floor side	positive,	according to informati	on from the structural	engineer				
Pos. 5 Side reinforcement at the free edge										
Pos. 5	Pos. 5 Edging as per BS EN 1992-1-1 (EC2), 9.3.1.4 (not pictured)									
Pos. 6 Lapping rei	nforcement									
Pos. 6		Balcony/floor side	necessary in	the tension zone, as s	pecified by the structu	ral engineer				

Application case recessed balcony

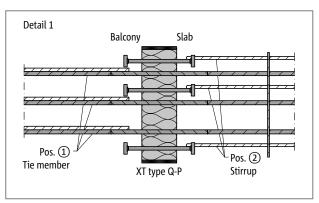
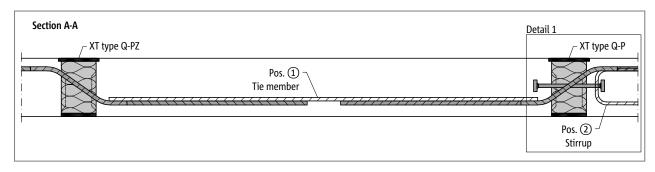
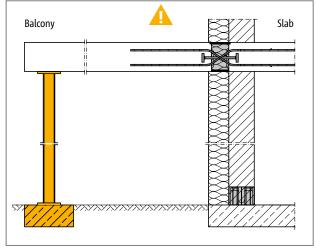



Fig. 168: Schöck Isokorb® XT type Q-P, Q-PZ: Detail 1; Reinforcement connection tie member

An XT type Q-PZ without pressure bearing is to be arranged on one side for the constraint-free support. An XT type Q-P with pressure bearing is then required on the opposite side. In order to maintain the balance of forces a tie member, which overlaps the shear force transmitting Isokorb[®]-bars, is to reinforce between XT type Q-PZ and XT type Q-P.


Schöck Isokorb® XT type Q-P, Q-PZ	V1	V2	V3	V4	V5	V6	V7	V8	V9
On-site reinforcement	Concrete strength class ≥ C25/30								
Pos. 1 Tie									
Pos. 1	2•H10	3•H10	4 • H10	2•H12	3•H12	2•H16	3•H16	3•H16	4 Ø 14
Pos. 2 Stirrup (bracing)									
Pos. 2	1•H10	2•H10	2•H10	2 • H10	2•H10	2•H10	3•H10	3•H10	4 • H10

Schöck Isokorb® XT type Q-P, Q-PZ	V1	V2	V3	V4	V5	V6	V7	V8	V9
Fixed point separa- tion recessed balcony					eւ [m]				
a, b ≤	8.5	9.8	8.5	8.9	8.5	7.7	7.7	7.7	7.7

Recessed balcony

- The fixed point separations a, b are to be selected with $a \le e_L$ and $b \le e_L$.
- > The floor side bracing of the tie is carried out via on-site stirrups, which are tied to the pressure bearings.
- > The required suspension reinforcement and the on-site slab reinforcement are not shown here.

Type of bearing: supported

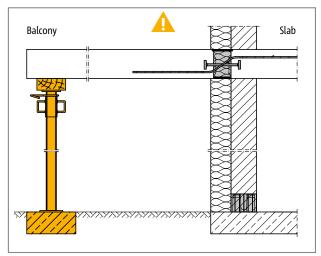
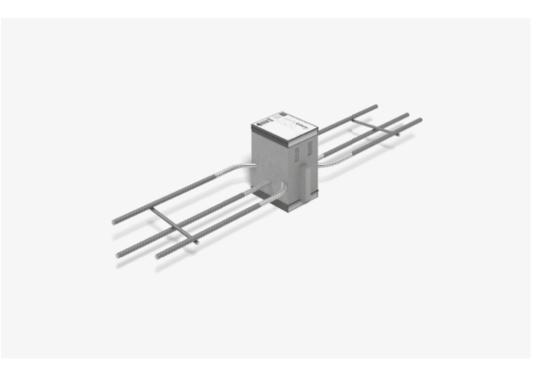



Fig. 169: Schöck Isokorb[®] XT type Q-P-VV: Continuous support required

Supported balcony

The Schöck Isokorb® XT type Q-P, Q-P-VV is developed for supported balconies. It transmits exclusively shear forces, no bending moments.


\rm Marning - omitting the pillars

- > The balcony will collapse if not supported.
- At all stages of construction, the balcony must be supported with statically suitable pillars or supports.
- > Even when completed, the balcony must be supported with statically suitable pillars or supports.
- A removal of temporary support is permitted only after installation of the final support.

🗹 Check list

- Has the Schöck Isokorb[®] type matching the static system been selected? XT type Q counts as pure shear force connection (pin connection).
- Is the balcony so planned that a continuous support is ensured in all stages of construction and in the final status?
- □ Is the danger notice for missing support entered in the implementation plans?
- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- Are the Schöck FEM guidelines taken into account with the calculation using FEM?
- With the selection of the design table is the relevant concrete strength class taken into account?
- □ Is the minimum slab thickness taken into consideration with Schöck Isokorb[®] types in fire protection configuration?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- Are the maximum allowable expansion joint spacings taken into account?
- Is the required component geometry present with the connection to a floor or a wall? Is a special design required?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Have existing horizontal loads e.g. from wind pressure, been taken into account as planned? Are additional Schöck Isokorb[®] XT type H required for this?
- With precast balconies are possibly necessary gaps for the front side transportation anchors and downpipes with internal drainage taken into account? Is the maximum centre distance of 300 mm for the Isokorb® bars observed?
- With 2- or 3-sided support is a Schöck Isokorb[®] selected for a connection free of constraint selected (possibly XT type Q-Z, XT type Q-PZ)?

Schöck Isokorb® XT type H

Schöck Isokorb® XT type H

Load-bearing thermal insulation element for the transmission of planned horizontal forces parallel and perpendicular to the insulation plane. The element may be used only in conjunction with other Isokorb[®] types that can absorb moments or shear forces.

The element with the load bearing capacity NN transmits forces perpendicular to the insulation plane. The element with the load bearing capacity VV-NN transmits forces parallel and perpendicular to the insulation plane.

Element arrangement | Installation cross sections

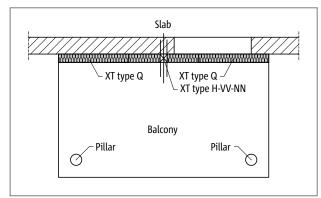
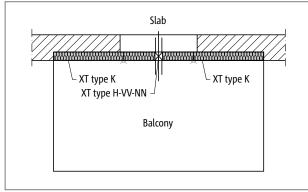
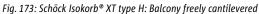




Fig. 171: Schöck Isokorb® XT type H: Balcony with column support

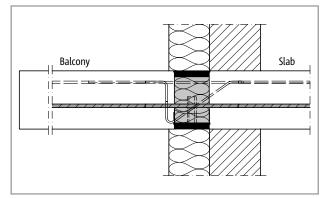


Fig. 175: Schöck Isokorb® XT type K, H-NN: Masonry with external insulation

🚺 Geometry

The employment of Schöck Isokorb® XT types H-NN1 and H-VV1-NN1 is possible for a wall connection with a minimum wall thickness of 200 mm.

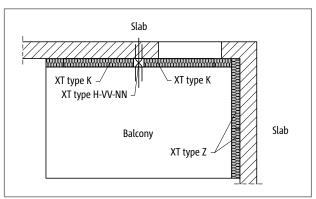


Fig. 172: Schöck Isokorb® XT type H: Balcony freely cantilevered

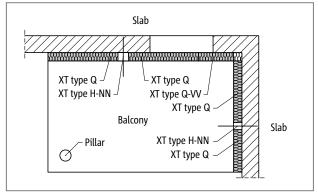


Fig. 174: Schöck Isokorb® XT type H: Balcony supported on two sides using columns

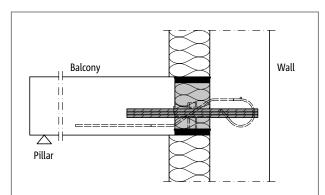
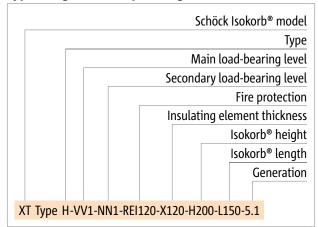


Fig. 176: Schöck Isokorb® XT type Q, H-VV-NN: Connection to a reinforced concrete wall with external insulation

XT :ype H

Product selection | Type designations | Special designs

Schöck Isokorb® XT type H variants


The configuration of the Schöck Isokorb® XT type H can vary as follows:

- Main load-bearing level: VV1, VV2, NN1, NN2
- Secondary load-bearing level: NN1

NN2 is available on request

- Fire resistance class: REI120 (standard)
- Insulating element thickness: X120 = 120 mm
- Isokorb® height:
- H = 160 to 250 mm
- Isokorb® length:
- L = 150 mm
- Generation:
 - 5.1

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

C25/30 design

Isokorb[®] height H [mm]

Schöck Isokorb® XT type H	N	N1	NN2 VV1-NN1		-NN1	N1 VV2-NN1			
Design values with	V _{Rd,y} [kN]	N _{Rd,x} [kN]							
C25/30	0.0	0.0 ±11.6		±49.2	±10.4	±11.6	±39.2	±49.2	
Shear force bars, horizontal		-		-	2 × 1	Ø 10	2 × 1 Ø 12		
Tension bars/compression bars	1 ¢	1 Ø 10		Ø 12	1 Ø 10		1 Ø 12		
Isokorb® length [mm]	1	150		150		150		150	

160 - 250

160 - 250

160 - 250

160 - 250

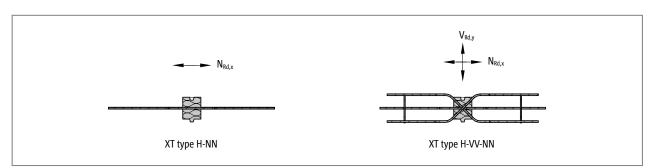


Fig. 177: Schöck Isokorb® XT type H: Type selection

Fig. 178: Schöck Isokorb® XT type H: Sign rule for the design

Notes on design

- With the design of a linear connection attention is to be paid that, with the employment of the supplementary type H the design values of the linear connection can be reduced (e.g. XT type Q with L = 1.0 m and XT type H with L = 0.15 m in the regular exchange signifies a reduction by ca. 13 % of v_{Rd} of the linear connection using XT type Q).
- With the type selection (XT type H-NN or H-VV-NN) and type arrangement attention is to be paid that no unnecessary fixed points are created and the maximum expansion joint spacings (of for example XT type K, XT type Q or XT type D) are maintained.
- ▶ The required number of Schöck Isokorb[®] XT type H-NN or H-VV-NN is to be determined according to static requirements.
- With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.

Expansion joint spacing

Maximum expansion joint spacing

If the length of the structural component length exceeds the maximum expansion joint spacing e, then the expansion joints must be integrated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. With fixed points such as, for example, balcony corners or with the employment of the Schöck Isokorb[®] XT types H, half the maximum expansion joint spacing e/2 applies.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

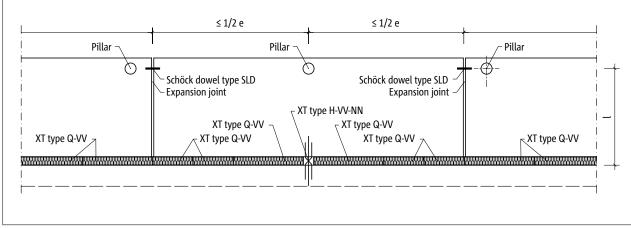


Fig. 179: Schöck Isokorb® XT type H: Expansion joint arrangement

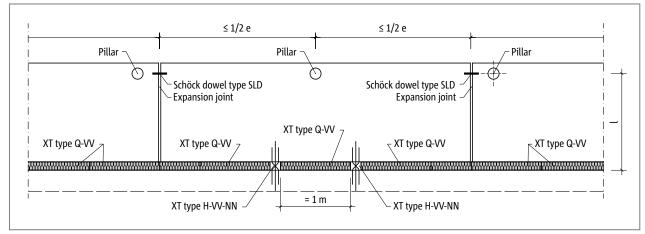


Fig. 180: Schöck Isokorb® XT type H: Expansion joint arrangement

Expansion joint spacing

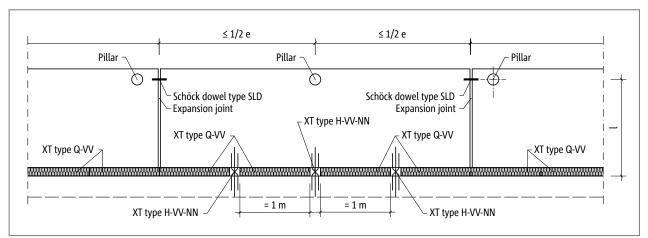
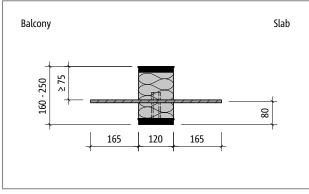


Fig. 181: Schöck Isokorb® XT type H: Expansion joint arrangement

Schöck Isokorb® XT type H combined with	XT type K	XT type K-U, K-O	XT type Q, Q-VV	XT type Q-P, Q-P-VV, Q-PZ	XT type D
maximum expansion joint spacing from fixed point e/2 [m]	≤ e/2 see p. 32	10.9	≤ e/2 see p. 101	≤ e/2 see p. 115	9.9

Expansion joints

A maximum of three Schöck Isokorb[®] XT type H-VV-NN only may be connected to a balcony. Another Schöck Isokorb[®] type with a connection length of one metre must be arranged between two of these elements.


If two Schöck Isokorb® XT type H-NN are arranged respectively at the edge of the expansion joint the following permitted expansion joint spacings for XT type are to be observed:

XT type H-NN1: 21.7 m

XT type H-NN2: 19.8 m

With the determination of the maximum expansion joint spacing in addition the combination of Schöck Isokorb[®] types is to be taken into account.

Product description

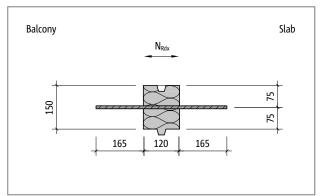


Fig. 182: Schöck Isokorb® XT type H-NN1: Product section

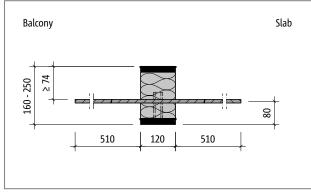
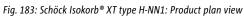



Fig. 184: Schöck Isokorb® XT type H-NN2: Product section

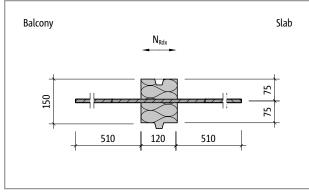
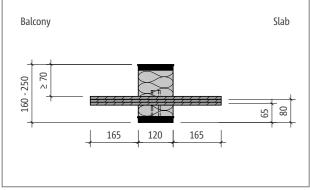



Fig. 185: Schöck Isokorb® XT type H-NN2: Product plan view

Product description

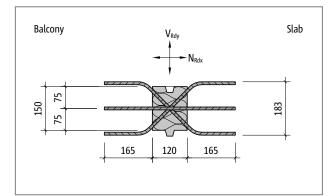


Fig. 186: Schöck Isokorb® XT type H-VV1-NN1: Product section

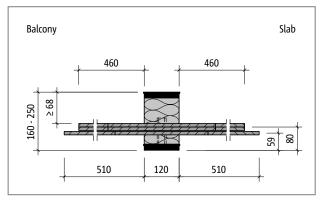


Fig. 187: Schöck Isokorb® XT type H-VV1-NN1: Product plan view

Fig. 189: Schöck Isokorb® XT type H-VV2-NN1: Product plan view

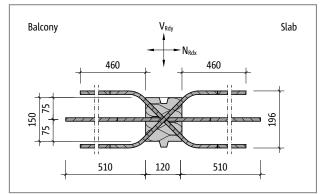
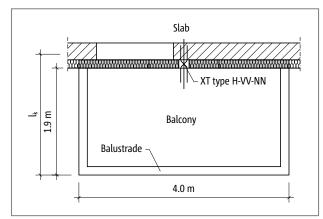



Fig. 188: Schöck Isokorb® XT type H-VV2-NN1: Product section

Product information

> Download further product plan views and cross-sections at www.schoeck.co.uk/download

Design example

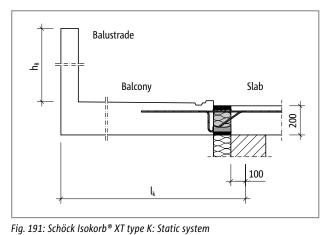


Fig. 190: Schöck Isokorb® XT type K, H: Plan view

Static system and design loads

Geometry:	Cantilever length Balcony slab thickness	l _k = 2.12 m h = 200 mm			
	Surrounding parapet on three sides	h _R = 1.0 m			
Design loads:	Balcony slab and surface Live load	g = 6.5 kN/m² g = 4.0 kN/m²			
	Edge load (parapet)	$q_{R} = 3.0 \text{ kN/m}$			
	Wind pressure	$w_e = 1.0 \text{ kN/m^2}$			
Exposure classes:	Outer XC 4 Inner XC 1				
Selected:	Concrete quality C25/30 for balcony and floor Concrete cover c_{nom} = 35 mm for Isokorb [®] tension bars (Reduction Δc_{def} by 5mm, wg. Quality measures Schöck Isokorb [®] production				
Connection geometry: Support floor: Support balcony:	No height offset, no floor edge downstand beam, no balcony upstand Floor edge directly supported Restraint of the cantilever slab using XT type K				

XT type H

Design example

Verification in the ultimate limit state

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
$ \begin{split} m_{Ed} &= -46.3 \text{ kNm/m} \\ & v_{Ed,z} &= +(\gamma_G \cdot g + \gamma_Q \cdot q) \cdot l_k + \gamma_G \cdot (g_R + 2 \cdot g_R \cdot l_k/4) \\ & v_{Ed,z} &= +(1.35 \cdot 6.5 + 1.5 \cdot 4.0) \cdot 2.12 + 1.35 \cdot (3.0 + 2 \cdot 3.0 \cdot 2.12/4) \\ & v_{Ed,z} &= +39.7 \text{ kN/m} \\ & N_{Ed,x} &= \gamma_Q \cdot w_e \cdot 4.0 \cdot (h + h_R) = 1.5 \cdot 1.0 \cdot 4.0 \cdot (0.2 + 1.0) = 7.2 \text{ kN (frontal wind} \\ & v_{Ed,y} &= \gamma_Q \cdot w_e \cdot 2 \cdot 1.9 \cdot (h + h_R) = 1.5 \cdot 1.0 \cdot 2 \cdot 1.9 \cdot (0.2 + 1.0) = 6.8 \text{ kN (lateral} \\ & Selected: & 1 \text{ Schöck Isokorb}^{\circ} \text{ XT type H-VV1-NN1-REI120-H200-L150-5.1} \\ & N_{Rd,x} &= \pm 11.6 \text{ kN (see page 126) > N_{Ed,x}} \\ & v_{Rd,y} &= \pm 10.4 \text{ kN (see page 126) > V_{Ed,y} \\ & selected: & \text{Schöck Isokorb}^{\circ} \text{ XT type K-M7-V1-REI120-CV35-X120-H200-6.0} \\ & Increased effect taking into account the installation of the Schöck Isokorb}^{\circ} \text{ XT type H} \\ & m_{Rd} &= 50.7 \text{ kNm/m (see XT type K)} \\ & > 48.1 \text{ kNm/m} = (4.00 \text{ m } /3.85 \text{ m}) \cdot 46.3 \text{ kNm/m} = m_{Ed} \\ & \end{split}$	
$\begin{aligned} v_{Ed,z} &= +(\gamma_{G} \cdot g + \gamma_{Q} \cdot q) \cdot l_{k} + \gamma_{G} \cdot (g_{R} + 2 \cdot g_{R} \cdot l_{k}/4) \\ v_{Ed,z} &= +(1.35 \cdot 6.5 + 1.5 \cdot 4.0) \cdot 2.12 + 1.35 \cdot (3.0 + 2 \cdot 3.0 \cdot 2.12/4) \\ v_{Ed,z} &= +39.7 \text{ kN/m} \end{aligned}$ $\begin{aligned} N_{Ed,x} &= \gamma_{Q} \cdot w_{e} \cdot 4.0 \cdot (h + h_{R}) = 1.5 \cdot 1.0 \cdot 4.0 \cdot (0.2 + 1.0) = 7.2 \text{ kN (frontal wind} \\ v_{Ed,y} &= \gamma_{Q} \cdot w_{e} \cdot 2 \cdot 1.9 \cdot (h + h_{R}) = 1.5 \cdot 1.0 \cdot 2 \cdot 1.9 \cdot (0.2 + 1.0) = 6.8 \text{ kN (lateral science)} \end{aligned}$ Selected: $\begin{aligned} \mathbf{1 \ Schöck \ lsokorb^{\oplus} \ XT \ type \ H-VV1-NN1-REI120-H200-L150-5.1 \\ N_{Rd,x} &= \pm 11.6 \text{ kN (see page 126) > N_{Ed,x} \\ V_{Rd,y} &= \pm 10.4 \text{ kN (see page 126) > V_{Ed,y} \end{aligned}$ selected: $\begin{aligned} \mathbf{Schöck \ lsokorb^{\oplus} \ XT \ type \ K-M7-V1-REI120-CV35-X120-H200-6.0 \\ Increased \ effect \ taking \ into \ account \ the \ installation \ of \ the \ Schöck \ lsokorb^{\oplus} \ XT \ type \ H_{MRd} \\ &= 50.7 \text{ kNm/m} \ (see \ XT \ type \ K) \\ &> 48.1 \text{ kNm/m} = (4.00 \text{ m} \ J.385 \text{ m}) \cdot 46.3 \text{ kNm/m} = m_{Ed} \end{aligned}$	
$v_{Ed,z}$ = +(1.35 • 6.5 + 1.5 • 4.0) • 2.12 + 1.35 • (3.0 + 2 • 3.0 • 2.12/4) $v_{Ed,z}$ = +39.7 kN/m $N_{Ed,x}$ = $\gamma_Q • w_e • 4.0 • (h + h_R) = 1.5 • 1.0 • 4.0 • (0.2 + 1.0) = 7.2 kN (frontal wind V_{Ed,y} Selected: 1 Schöck Isokorb® XT type H-VV1-NN1-REI120-H200-L150-5.1 N_{Rd,x} = ±11.6 kN (see page 126) > N_{Ed,x} V_{Rd,y} = ±10.4 kN (see page 126) > V_{Ed,y} selected: Schöck Isokorb® XT type K-M7-V1-REI120-CV35-X120-H200-6.0 Increased effect taking into account the installation of the Schöck Isokorb® XT type H m_{Rd} = 50.7 kNm/m (see XT type K) > 48.1 kNm/m = (4.00 m /3.85 m) • 46.3 kNm/m = m_{Ed} $	
$v_{Ed,z} = +39.7 \text{ kN/m}$ $N_{Ed,x} = \gamma_{Q} \cdot w_{e} \cdot 4.0 \cdot (h + h_{R}) = 1.5 \cdot 1.0 \cdot 4.0 \cdot (0.2 + 1.0) = 7.2 \text{ kN (frontal wind} V_{Ed,y} = \gamma_{Q} \cdot w_{e} \cdot 2 \cdot 1.9 \cdot (h + h_{R}) = 1.5 \cdot 1.0 \cdot 2 \cdot 1.9 \cdot (0.2 + 1.0) = 6.8 \text{ kN (lateral})$ Selected: $1 \text{ Schöck Isokorb} \text{ XT type H-VV1-NN1-REI120-H200-L150-5.1}$ $N_{Rd,x} = \pm 11.6 \text{ kN (see page 126)} > N_{Ed,x}$ $V_{Rd,y} = \pm 10.4 \text{ kN (see page 126)} > V_{Ed,y}$ selected: $3 \text{ Schöck Isokorb} \text{ XT type K-M7-V1-REI120-CV35-X120-H200-6.0}$ Increased effect taking into account the installation of the Schöck Isokorb XT type H (m_{Rd}) = 50.7 \text{ kNm/m (see XT type K)} + 48.1 \text{ kNm/m} = (4.00 \text{ m } / 3.85 \text{ m}) \cdot 46.3 \text{ kNm/m} = m_{Ed}	
N Ed,x= $\gamma_Q \cdot w_e \cdot 4.0 \cdot (h + h_R) = 1.5 \cdot 1.0 \cdot 4.0 \cdot (0.2 + 1.0) = 7.2 kN (frontal windVEd,ySelected:1 Schöck Isokorb® XT type H-VV1-NN1-REI120-H200-L150-5.1NRd,xNRd,x= ±11.6 kN (see page 126) > NEd,xVRd,ySelected:Schöck Isokorb® XT type K-M7-V1-REI120-CV35-X120-H200-6.0Increased effect taking into account the installation of the Schöck Isokorb® XT type H m_{Rd} Selected:Schöck Isokorb® XT type K-M7-V1-REI120-CV35-X120-H200-6.0Increased effect taking into account the installation of the Schöck Isokorb® XT type H m_{Rd} Selected:Schöck Isokorb® XT type K-M7-V1-REI120-CV35-X120-H200-6.0Increased effect taking into account the installation of the Schöck Isokorb® XT type H m_{Rd} $	
$V_{Ed,y} = \gamma_{Q} \cdot w_{e} \cdot 2 \cdot 1.9 \cdot (h + h_{R}) = 1.5 \cdot 1.0 \cdot 2 \cdot 1.9 \cdot (0.2 + 1.0) = 6.8 \text{ kN} \text{ (lateral}$ Selected: $1 \text{ Schöck Isokorb}^{\circledast} \text{ XT type H-VV1-NN1-REI120-H200-L150-5.1}$ $N_{Rd,x} = \pm 11.6 \text{ kN} \text{ (see page 126)} > N_{Ed,x}$ $V_{Rd,y} = \pm 10.4 \text{ kN} \text{ (see page 126)} > V_{Ed,y}$ selected: $3 \text{ Schöck Isokorb}^{\circledast} \text{ XT type K-M7-V1-REI120-CV35-X120-H200-6.0}$ Increased effect taking into account the installation of the Schöck Isokorb}^{\circledast} \text{ XT type H} $ m_{Rd} = 50.7 \text{ kNm/m} \text{ (see XT type K)}$ $> 48.1 \text{ kNm/m} = (4.00 \text{ m } / 3.85 \text{ m}) \cdot 46.3 \text{ kNm/m} = m_{Ed} $	
Selected:1 Schöck Isokorb® XT type H-VV1-NN1-REI120-H200-L150-5.1 $N_{Rd,x} = \pm 11.6$ kN (see page 126) > $N_{Ed,x}$ $V_{Rd,y} = \pm 10.4$ kN (see page 126) > $V_{Ed,y}$ selected:Schöck Isokorb® XT type K-M7-V1-REI120-CV35-X120-H200-6.0 Increased effect taking into account the installation of the Schöck Isokorb® XT type H $ m_{Rd} = 50.7$ kNm/m (see XT type K) > 48.1 kNm/m = (4.00 m /3.85 m) • 46.3 kNm/m = $ m_{Ed} $	I)
NRd,x= ±11.6 kN (see page 126) > NEd,x VRd,ySelected:Schöck Isokorb® XT type K-M7-V1-REI120-CV35-X120-H200-6.0 Increased effect taking into account the installation of the Schöck Isokorb® XT type H $ m_{Rd} $ = 50.7 kNm/m (see XT type K) > 48.1 kNm/m = (4.00 m /3.85 m) • 46.3 kNm/m = m_{Ed}	l wind)
$V_{Rd,y}$ = ±10.4 kN (see page 126) > $V_{Ed,y}$ selected:Schöck Isokorb® XT type K-M7-V1-REI120-CV35-X120-H200-6.0Increased effect taking into account the installation of the Schöck Isokorb® XT type H $ m_{Rd} $ = 50.7 kNm/m (see XT type K)> 48.1 kNm/m = (4.00 m /3.85 m) • 46.3 kNm/m = $ m_{Ed} $	
selected: Schöck Isokorb® XT type K-M7-V1-REI120-CV35-X120-H200-6.0 Increased effect taking into account the installation of the Schöck Isokorb® XT type H $ m_{Rd} = 50.7 \text{ kNm/m} (\text{see XT type K})$ > 48.1 kNm/m = (4.00 m /3.85 m) • 46.3 kNm/m = $ m_{Ed} $	
Increased effect taking into account the installation of the Schöck Isokorb® XT type F m _{Rd} = 50.7 kNm/m (see XT type K) > 48.1 kNm/m = (4.00 m /3.85 m) • 46.3 kNm/m = m _{Ed}	
m _{Rd} = 50.7 kNm/m (see XT type K) > 48.1 kNm/m = (4.00 m /3.85 m) • 46.3 kNm/m = m _{Ed}	
> 48.1 kNm/m = (4.00 m /3.85 m) • 46.3 kNm/m = m _{Ed}	1:
v _{Rd,z} = 75.2 kN/m (see XT type K) > 41.2 kN/m = (4.00 m /3.85 m) • 39.7 kN/m	
	= V _{Ed,z}
Verification for the exceptional load case earthquake	
Load assumptions for earthquakes: $F_{a,x} = \pm 15.0 \text{ kN/m}$ (horizontal, parallel to the joint)	
F _{a,y} = ±15.0 kN/m (horizontal, perpendicular to the joint)	
Internal forces: $N_{EdA,x} = \pm 4.0 \text{ m} \cdot F_{a,x} = \pm 4.0 \text{ m} \cdot 15.0 \text{ kN/m} = 60.0 \text{ kN}$ (force perpendicular to the	joint)
$V_{EdA,y}$ = ±4.0 m · F _{a,y} = ±4.0 m · 15.0 kN/m = 60.0 kN (force parallel to the joint)	
Selected: 2 Schöck Isokorb® XT type H-VV2-NN1-REI120-H200-L150-5.1	
$N_{Rd,x}$ = ±49.2 kN • 2 = 98.4 kN (see page 126) > $N_{EdA,x}$	
$V_{Rd,y}$ = ±39.2 kN · 2 = 78.4 kN (see page 126) > $V_{EdA,y}$	
selected: Schöck Isokorb® XT type K-M7-V1-REI120-CV35-X120-H200-6.0	
Increased effect taking into account the installation of the Schöck Isokorb® XT type F	1:
$ m_{Rd} $ = 50.7 kNm/m (see XT type K)	
> 50.1 kNm/m = (4.00 m /3.70 m) • 46.3 kNm/m = m _{Ed}	
v _{Rd,z} = 75.2 kN/m (see XT type K) > 42.9 kN/m = (4.00 m /3.70 m) • 39.7 kN/m	

Design example
 Information on the expansion joint spacing is to be noted, see page 128.

🗹 Check list

- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- With a linear connection in combination with Schöck Isokorb[®] of length 1 m, has the reduction of the design values of the linear connection been taken into account?
- With the selection of the design table is the relevant concrete strength class taken into account?
- Are the maximum allowable expansion joint spacings taken into account?
- Is the required component geometry present with the connection to a floor or a wall? Is a special design required?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?

Schöck Isokorb® XT type Z

Schöck Isokorb® XT type Z

Suitable as insulating spacer for various installation situations and fire protection requirements. The Schöck Isokorb[®] XT type Z transfers no forces.

Element arrangement | Installation cross sections

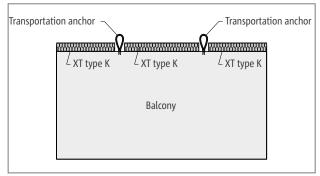


Fig. 192: Schöck Isokorb® XT type K: Precast balcony with transport anchor; insulating adapter XT type Z can be inserted on-site

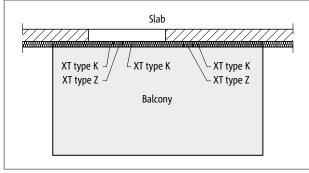
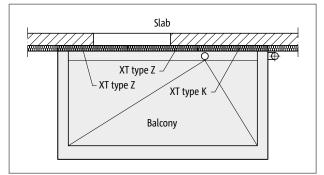
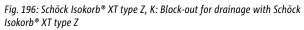




Fig. 194: Schöck Isokorb® XT type Z, K: Balcony freely cantilevered

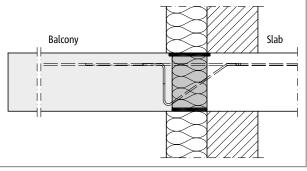
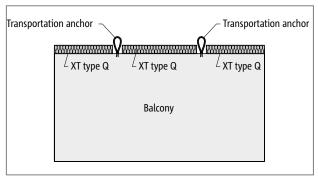
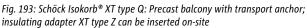




Fig. 198: Schöck Isokorb® XT type Z, K: Thermal insulating composite system (TICS)

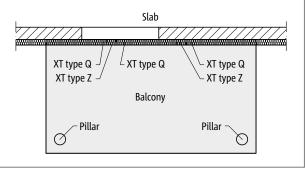


Fig. 195: Schöck Isokorb® XT type Z, Q: Balcony with column support

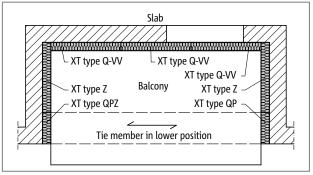


Fig. 197: Schöck Isokorb® XT type Z, Q-VV, Q-P, Q-PZ: Recessed balcony supported on three sides with tie member

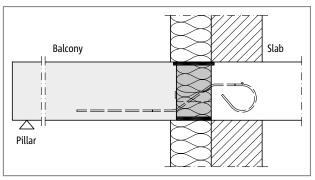
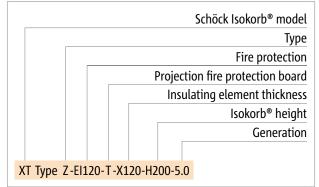


Fig. 199: Schöck Isokorb® XT type Z, Q: Thermal insulating composite system (TICS)

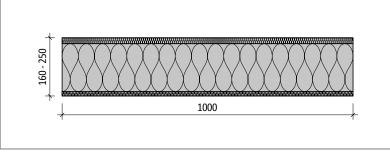
Product selection | Type designations

Schöck Isokorb® XT type Z variants

Configuration of the Schöck Isokorb® XT type Z can be varied as follows:

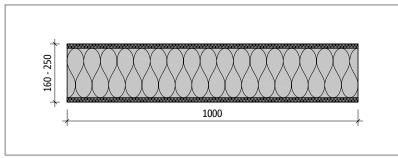

Fire resistance class

EI120: Standard, Fire protection board top and bottom, upper fire protection board without overhang, with slide bar and fire protection tape


EI120-T: Fire protection board top and bottom, upper fire protection board with overhang, 10 mm on both sides

- Overhang fire protection board:
 T = Overhang fire protection board
- Insulating element thickness:
- X120 = 120 mm
- Isokorb[®] height:
- H = 160 250 mm
- Generation:
 - 5.0
- ▶ Isokorb[®] length:
 - L = 150 mm or 1000 mm

Type designations in planning documents



Product description

120

Fig. 200: Schöck Isokorb® XT type Z-EI120-L1000: Product view

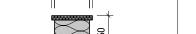
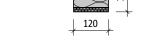


Fig. 201: Schöck Isokorb® XT type Z-EI120: Product section

Fig. 203: Schöck Isokorb® XT type Z-EI120-T: Product section

Fig. 202: Schöck Isokorb® XT type Z-EI120-T-L1000: Product view

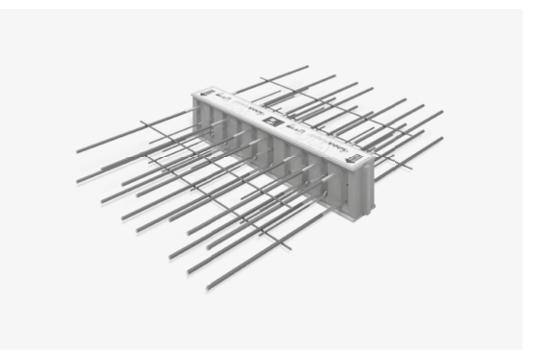

i **Product information**

- The Schöck Isokorb® XT type Z is supplied in lengths of 1000 mm (length 100 mm and 150 mm lengths on request)
- The Schöck Isokorb[®] XT type Z-L1000 can be shortened as required to the desired length.
- Download further product plan views and cross-sections at www.schoeck.co.uk/download

i Notes on design

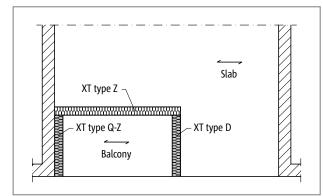
- Edge and centre distances of the adjacent Schöck Isokorb® types are to be noted. ▶
- With the design of a linear connection it is to be noted that the use of the Schöck Isokorb® XT type Z can reduce the design values of the linear connection (e. g. Schöck Isokorb® type with L = 1.0 m and Schöck Isokorb® XT type Z with L = 0.1 m in regular alternation means a reduction m_{Rd} of the linear connection of ca. 9%)
- The Schöck Isokorb® XT type Z-EI120 is suitable for use with Schöck Isokorb® XT type K and A.
- The Schöck Isokorb® XT type Z-EI120-T is suitable for use with Schöck Isokorb® XT type K-U, K-O, K-HV, K-BH, K-WU, K-WO, Q, QP, D, F and O.
- The Schöck Isokorb® XT type Z-E1120 can be retrofitted (e.g. Transport anchor holes with prefabricated balconies), as fire protection board without overhang.
- The fire protection type corresponds with the maximum fire protection class of the connected load-bearing Schöck Isokorb type (e.g. XT type $K \rightarrow REI120$, XT type QP $\rightarrow REI120$ or XT type $A \rightarrow REI120$).

120



🗹 Check list

- With a linear connection in combination with Schöck Isokorb® of length 1 m, has the reduction of the design values of the linear connection been taken into account?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?


Schöck Isokorb® XT type D

Schöck Isokorb® XT type D

Suitable for continuous floors. It transmits negative moment and positive shear forces with cantilevered balconies or positive moments with shear forces.

Element arrangement | Installation cross sections

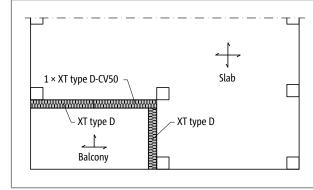
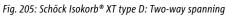



Fig. 204: Schöck Isokorb® XT type D, Q-Z: One-way spanning

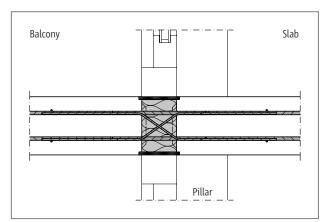


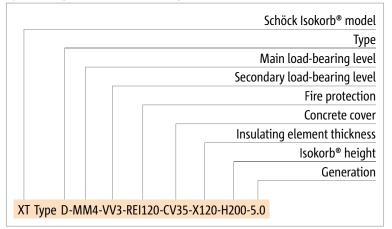
Fig. 206: Schöck Isokorb® XT type D: One-way spanning

Fig. 207: Schöck Isokorb® XT type D: Two-way spanning

Element arrangement

- With connection across the corner with Schöck Isokorb® XT type D, a type D-CV50 (2nd position) is required in one axial direction. Therefore a minimum slab thickness of 200 mm.
- ▶ The Schöck Isokorb[®] transmits moments vertically to the insulation joint, it transmit no moments parallel to the insulation joint. Therefore it is not suitable for employment within point supported floor bays or in balconies with 4 columns.

XT type D


Product selection | Type designations | Special designs

Schöck Isokorb® XT type D variants

The configuration of the Schöck Isokorb® XT type D can vary as follows:

- Main load-bearing level:
 - MM2 to MM5
- MM1 is available on requestSecondary load-bearing level:
- VV1 to VV3
- Fire resistance class: REI120 (standard): Top and bottom fire protection projecting by 10mm on both sides
- Concrete cover of the tension bars:
 CV35: Top CV = 35 mm, bottom CV = 30 mm
 CV50: Top CV = 50 mm, bottom CV = 50 mm
- CV50: IOP CV = 50 mm, bottom CV = 5
- Insulating element thickness: X120 = 120 mm
- Isokorb[®] height:
- $H = H_{min}$ to 250 mm (H_{min} i dependent on concrete cover and shear force load-bearing level see p.144)
- Generation:
 - 5.0

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

In accordance with approval heights up to 500 mm are possible.

C25/30 design

Schöck Isokorb® XT type D		MM2-VV1	MM2-VV2	MM2-VV3	MM3-VV1	MM3-VV2	MM3-VV3			
Design values with	Concrete cover CV [mm]		Concrete strength class ≥ C25/30							
with	CV35	CV50		m _{Rd,y} [kNm/m]						
	160		±15.7	-	-	±22.9	-	-		
		200	±16.6	-	-	±24.3	-	-		
	170		±17.6	±15.4	-	±25.7	±23.5	-		
		210	±18.5	±16.2	-	±27.1	±24.8	-		
	180		±19.5	±17.0	±13.9	±28.5	±26.1	±22.9		
Isokorb® height H [mm]		220	±20.4	±17.9	±14.6	±29.9	±27.3	±24.1		
	190		±21.3	±18.7	±15.3	±31.2	±28.6	±25.2		
		230	±22.3	±19.5	±15.9	±32.6	±29.8	±26.3		
	200		±23.2	±20.3	±16.6	±34.0	±31.1	±27.4		
		240	±24.2	±21.2	±17.3	±35.4	±32.4	±28.5		
	210		±25.1	±22.0	±18.0	±36.8	±33.6	±29.6		
		250	±26.1	±22.8	±18.6	±38.1	±34.9	±30.7		
	220		±27.0	±23.6	±19.3	±39.5	±36.2	±31.8		
	230		±28.9	±25.3	±20.7	±42.3	±38.7	±34.1		
	240		±30.8	±26.9	±22.0	±45.1	±41.2	±36.3		
	250		±32.7	±28.6	±23.4	±47.8	±43.8	±38.5		
					V _{Rd,z} [kN/m]				
Secondary load-bearing level	VV1/V	V2/VV3	±42.3	±75.2	±117.5	±42.3	±75.2	±117.5		

Schöck Isokorb® XT type D	MM2-VV1	MM2-VV2	MM2-VV3	MM3-VV1	MM3-VV2	MM3-VV3		
Isokorb® length [mm]		1000			1000			
Tension bars/compression members		2 × 5 Ø 12			2 × 7 Ø 12			
Shear force bars	2 x 6 Ø 6	2 x 6 Ø 8	2 x 6 Ø 10	2 x 6 Ø 6	2 x 6 Ø 8	2 x 6 Ø 10		
H _{min} with CV35 [mm]	160	170	180	160	170	180		
H _{min} with CV50 [mm]	200	210	220	200	210	220		

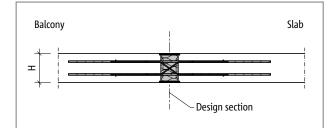


Fig. 208: Schöck Isokorb® XT type D: Static system

C25/30 design

Schöck Is	okorb® XT ty	pe D	MM4-VV1	MM4-VV2	MM4-VV3	MM5-VV1	MM5-VV2	MM5-VV3
Design values with		te cover [mm]		Concrete strength class ≥ C25/30				
with	CV35	CV50			m _{Rd,y} [k	Nm/m]		
	160		±33.9	-	-	±41.1	-	-
		200	±35.9	-	-	±43.6	-	-
	170		±37.9	±35.7	-	±46.1	±43.9	-
		210	±40.0	±37.7	-	±48.6	±46.3	-
	180		±42.0	±39.6	±36.5	±51.0	±48.6	±45.5
		220	±44.0	±41.5	±38.2	±53.5	±51.0	±47.7
	190		±46.1	±43.4	±40.0	±56.0	±53.3	±49.9
Isokorb® height		230	±48.1	±45.4	±41.8	±58.5	±55.7	±52.1
H [mm]	200		±50.2	±47.3	±43.6	±60.9	±58.0	±54.3
-		240	±52.2	±49.2	±45.3	±63.4	±60.4	±56.5
	210		±54.2	±51.1	±47.1	±65.9	±62.8	±58.7
		250	±56.3	±53.0	±48.9	±68.4	±65.1	±61.0
	220		±58.3	±55.0	±50.6	±70.8	±67.5	±63.2
	230		±62.4	±58.8	±54.2	±75.8	±72.2	±67.6
	240		±66.5	±62.6	±57.7	±80.8	±76.9	±72.0
	250		±70.6	±66.5	±61.3	±85.7	±81.6	±76.4
					V _{Rd,z} [(N/m]		
Secondary load-bearing level	VV1/V	V2/VV3	±42.3	±75.2	±117.5	±42.3	±75.2	±117.5

Schöck Isokorb® XT type D	MM4-VV1	MM4-VV2	MM4-VV3	MM5-VV1	MM5-VV2	MM5-VV3	
Isokorb [®] length [mm]		1000		1000			
Tension bars/compression members		2 × 10 Ø 12			2 × 12 Ø 12		
Shear force bars	2 x 6 Ø 6	2 x 6 Ø 8	2 x 6 Ø 10	2 x 6 Ø 6	2 x 6 Ø 8	2 x 6 Ø 10	
H _{min} with CV35 [mm]	160	170	180	160	170	180	
H _{min} with CV50 [mm]	200	210	220	200	210	220	

Notes on design

- With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- The indicative minimum concrete strength class of the external structural component is C32/40.
- A static verification is to be provided for the adjacent reinforced concrete structural component on both sides of the Schöck Isokorb[®].
- The shear force loading of the slabs in the area of the insulation joint is to be limited to $V_{Rd, max}$, whereby $V_{Rd, max}$, acc. to BS EN 1992-1-1 (EC2), Exp. (6.9) is determined for θ = 45 ° and α = 90 ° (slab load-bearing capacity).
- The Schöck Isokorb® XT type D transmits only bending moments perpendicular to the insulation slab. The Schöck Isokorb® transmits no torsion moments. Therefore the arrangement of a Schöck Isokorb® XT type D is not sensible in a punctually supported slab without downstand beams.

Expansion joint spacing

Maximum expansion joint spacing

If the length of the structural component length exceeds the maximum expansion joint spacing e, then the expansion joints must be integrated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. With fixed points such as, for example, balcony corners or with the employment of the Schöck Isokorb[®] XT types H, half the maximum expansion joint spacing e/2 applies.

Schöck Isokorb® XT type D		MM2	MM3	MM4	MM5
Maximum expansion joint spacing e		e [m]			
Insulating element thickness [mm]	120		19	9.8	

Edge distances

The Schöck Isokorb® must be so arranged at the expansion joint that the following conditions are met:

- For the centre distance of the tension bars from the free edge or from the expansion joint: $e_R \ge 50$ mm and $e_R \le 150$ mm applies.
- For the centre distance of the compression members from the free edge or from the expansion joint the following applies: $e_R \ge 50 \text{ mm}$.
- For the centre distance of the shear force bars from the free edge or from the expansion joint the following applies: $e_R \ge 100$ mm and $e_R \le 150$ mm.

Product description

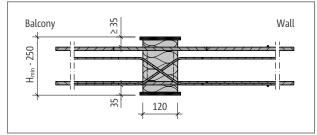


Fig. 209: Schöck Isokorb® XT type D with CV35: Product section

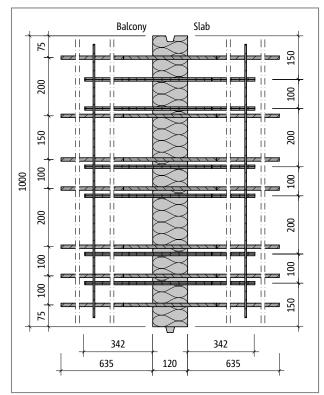


Fig. 211: Schöck Isokorb® XT type D-MM3-VV1: Plan view

Product information

Download further product plan views and cross-sections at www.schoeck.co.uk/download

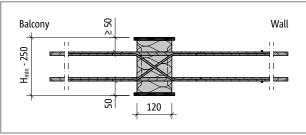


Fig. 210: Schöck Isokorb® XT type D with CV50: Product section

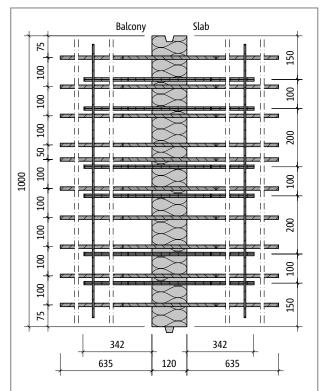


Fig. 212: Schöck Isokorb® XT type D-MM4-VV1: Plan view

XT type D

On-site reinforcement

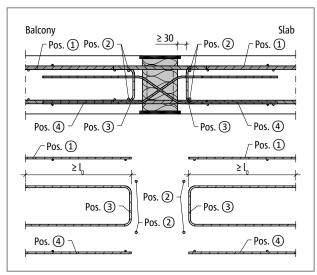


Fig. 213: Schöck Isokorb® XT type D: On-site reinforcement

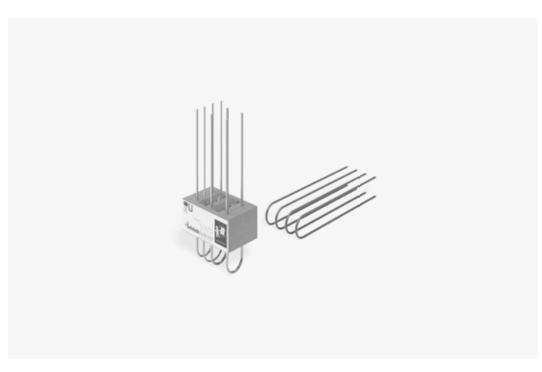
Information about on-site reinforcement

- The rules according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA apply for the determination of the overlap length. A reduction of the required overlap length with m_{Ed}/m_{Rd} is permitted. For the overlap (l) with the Schöck Isokorb[®] for the XT type D a length of the tension bars of 605 can be brought to account.
- An edge and suspension reinforcement (Pos. 3) is to be arranged on both sides of the Schöck Isokorb[®] XT type D. Details in the table apply for Schöck Isokorb[®] with a loading of 100% of the maximum design internal forces with 25/30.

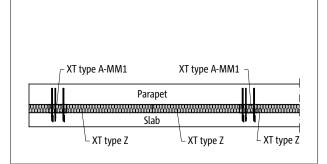
On-site reinforcement

The reinforcement in the reinforced concrete slab is determined from the structural engineer's design. With this both the effective moment and the effective shear force should be taken into account.

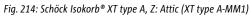
In addition, it is to be ensured that the tension bars of the Schöck Isokorb[®] are 100% lapped. The existing inner slab reinforcement can be taken into account as long as the maximum separation to the tension bars of the Schöck Isokorb[®] of 4Ø is maintained. Additional reinforcement may be required.


Schöck Isokorb® XT type D	MM2-VV1	MM2-VV2	MM2-VV3	MM3-VV1	MM3-VV2	MM3-VV3
On-site reinforcement	Concrete strength class ≥ C25/30					
Pos. 1 Lapping reinforcement (re	quired with nega	tive moment))				
Pos. 1 [mm ² /m]	565	565	565	791	791	791
Pos. 2 Steel bars along the insula	ation joint					
Pos. 2	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8
Pos. 3 Edge and suspension reinf	orcement					
Pos. 3	H8@250	H8@150	H8@100	H8@250	H8@150	H8@100
Pos. 4 Lapping reinforcement (required with positive moment)						
Pos. 4 [mm ² /m]	565	565	565	791	791	791

Schöck Isokorb® XT type D	MM4-VV1	MM4-VV2	MM4-VV3	MM5-VV1	MM5-VV2	MM5-VV3
On-site reinforcement	Concrete strength class ≥ C25/30					
Pos. 1 Lapping reinforcement (re	quired with nega	tive moment))				
Pos. 1 [mm ² /m]	1130	1130	1130	1357	1357	1357
Pos. 2 Steel bars along the insula	tion joint					
Pos. 2	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8
Pos. 3 Edge and suspension reinf	Pos. 3 Edge and suspension reinforcement					
Pos. 3	H8@250	H8@150	H8@100	H8@250	H8@150	H8@100
Pos. 4 Lapping reinforcement (required with positive moment)						
Pos. 4 [mm ² /m]	1130	1130	1130	1357	1357	1357


🗹 Check list

- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- Are the maximum allowable expansion joint spacings taken into account?
- With the selection of the design table is the relevant concrete cover taken into account?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the lsokorb[®] type description in the implementation plans?
- □ Is the minimum slab thickness (≥ 200 mm) and the required concrete cover (-CV50) taken into account with connection over a corner using Schöck Isokorb[®] XT type D?
- With XT type D in conjunction with prefabricated floors is the required block-out (width ≥ 650 mm from insulating element) drawn into the implementation plans and is the on-site reinforcement adjusted?
- With 2- or 3-sided support is a Schöck Isokorb[®] selected for a connection free of constraint selected (possibly XT type Q-Z, XT type Q-PZ)?
- Have the requirements for on-site reinforcement of connections been defined in each case?


Schöck Isokorb® XT type A

Schöck Isokorb® XT type A Suitable for parapets and balustrades. It transmits moments, shear forces and compression forces.

Element arrangement | Installation cross sections

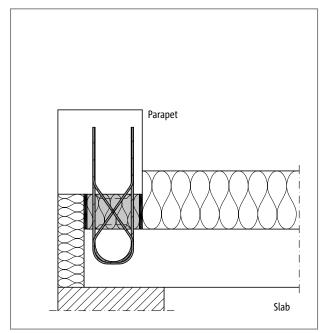


Fig. 216: Schöck Isokorb® XT type A: Connection of a parapet (XT type A-MM1)

Element arangement/installation cross-section

For the insulation between the Schöck Isokorb[®] the Schöck Isokorb[®] XT type Z (see page 135) is available in fire protective configuration.

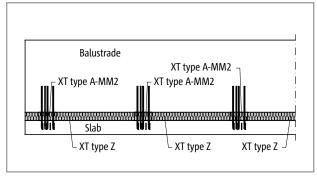


Fig. 215: Schöck Isokorb® XT type A, Z: Parapet (XT type A-MM2)

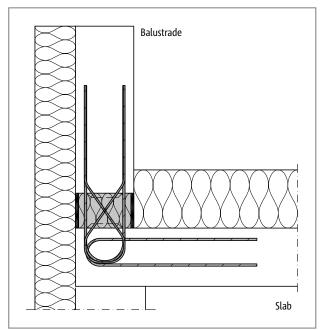
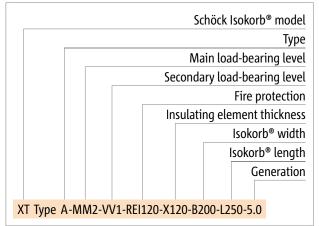


Fig. 217: Schöck Isokorb® XT type A: Connection to a balustrade (XT type A-MM2)

XT type A

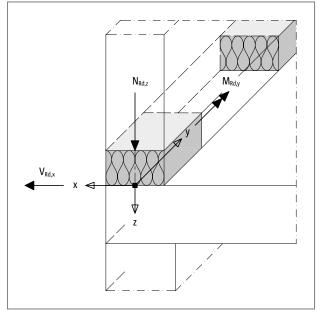

Product selection | Type designations | Special designs

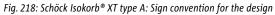
Schöck Isokorb® XT type A variants

The configuration of the Schöck Isokorb® XT type A can vary as follows:

- Main load-bearing level: MM1 for parapets
 - MM2 for balustrades
- Secondary load-bearing level: VV1
- Fire resistance class: REI120 (standard): Top and bottom fire protection projecting by 10mm on both sides
- Insulating element thickness:
- X120 = 120 mm
- Isokorb[®] width:
 - B = 160 250 mm, R0, REI120
- Isokorb® length:
- L = 250 mm
- Generation:
 - 5.0

Type designations in planning documents




Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

Design force direction

Direction of forces

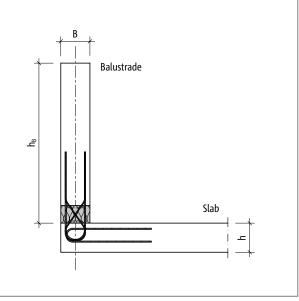


Fig. 219: Schöck Isokorb® XT type A: Static system

Determination of spacing

Determination of the maximum spacing

The maximum spacing a_{max} of several Schöck Isokorb[®] T type A depends on the impacting moments $m_{Ed,y}$, normal forces $m_{Ed,z}$ and shear forces $v_{Ed,x}$. It can be determined with the aid of the procedure described below.

Verification is provided if the selected distance $a_{prov} \le a_{max}$ is = min ($a_{max,1}$; $a_{max,2}$). Then, no further verification of the design internal forces is required.

Procedure:

Determination of a_{max,1 (Diagram)}

The maximum centre distance $a_{max,1}$ of several Schöck Isokorb[®] T type A can be determined depending on the impacting moments $m_{Ed,y}$ and normal forces $n_{Ed,z}$ with the aid of the following diagram.

- Determination of the moments m_{Ed,y} and normal forces n_{Ed,z}
- Calculation of the ratio n_{Ed,z}/m_{Ed,y}
- ▶ Read up the righthand axis for n_{Ed,z}/m_{Ed,y} using the calculated ratio ①
- > Draw horizontal line up to the intersection point with the graphs (Take note of Schöck Isokorb® type and width)
- Draw vertical line in the intersection point and read off N_{Rd,z} (intersection point of the vertical line with N_{Rd,z}-axis) (2)
- Determination of the maximum distance: a_{max,1} = N_{Rd,z}/n_{Ed,z}

Determination a_{max,2}

The maximum spacing $a_{max,2}$ of several Schöck Isokorb[®] T type A depens on the shear force

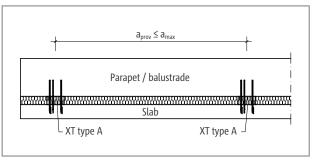
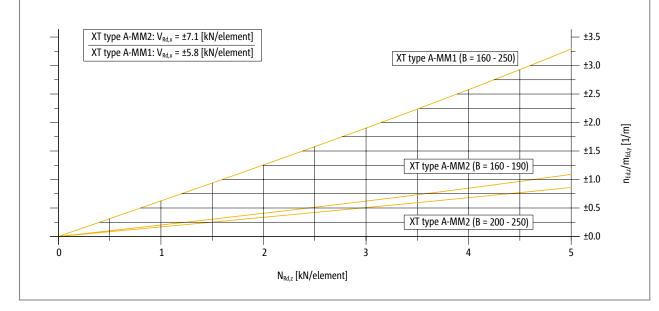


Fig. 220: Schöck Isokorb® XT type A: Verification met if selected distance $a_{prov} \leq a_{max}$

Numerical example of determination of centre distances


Given:	XT type A-	MM2	B = 190 mm					
Internal forces per metre con	Internal forces per metre connection length							
	n _{Ed,z}	= 12.0 kN/m						
	V _{Ed,x}	= 2.0 kN/m						
	m _{Ed,y}	=1.5 kNm/m						
Determination of a _{max,1}								
Input value ①	n _{Ed,z} /m _{Ed,y}	= 12.0 [kN/m] / 1.	5[kNm/m] = 8.0 [1/m]					
Reading (2)	$N_{Rd,z}$	= 25.7 kN						
	a _{max,1}	= 25.7 kN / 12.0 [k	(N/m] = 2.14 m					
Determination of a _{max2}	a _{max,2}	= 7.1 kN / 2.0 [kN/	/m] = 3.55 m					
⇒	a _{max}	= 2.14 m						

Determination of spacing

Detailed view diagram spacing (0 < N_{Rd,z} < 5 [kN/element])

Determination of spacing

For $n_{ed,z} = 0$ or $m_{ed,y} = 0$, use design variants A, B, or C.

XT type A

157

Design variants

The Schöck Isokorb[®] XT type A, independent of the allowable normal force $N_{Rd,z}$ and the acceptable moment $M_{Rd,y}$ has a constant acceptable shear force $R_{d,x}$. The allowable moment $M_{Rd,y}$ and the acceptable normal force $N_{Rd,z}$ condition each other in one interaction. For the design of the Schöck Isokorb[®] XT type A there are three **design variants A,B,C** available.

Design variant A:

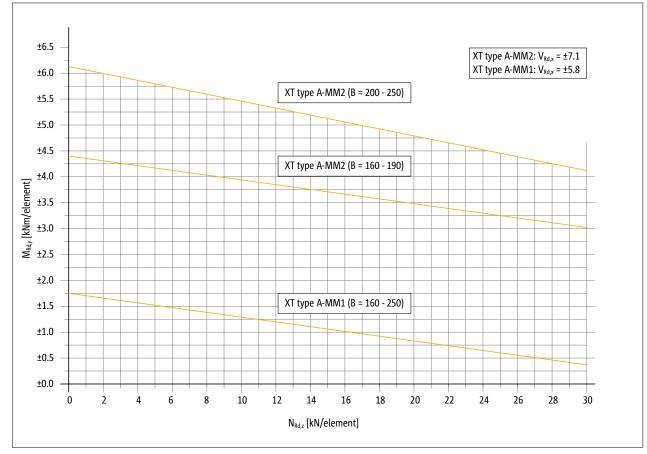
In the **design table** the interaction formula is given, solved once according to the allowable moment $M_{Rd,y}$ [kNm/element] depending on an inormal force $N_{Ed,z}$ [kN/element] and solved once according to the allowable normal force $N_{Rd,z}$ [kN/element] depending on a moment $M_{Ed,y}$ [kNm/element]. Verification met: $N_{Ed,z} \leq N_{Rd,z}(M_{Ed,y})$ or $M_{Ed,y} \leq M_{Rd,y}(N_{Ed,z})$ and $V_{Ed,x} \leq V_{Rd,x}$

Design variant B:

In the **design diagram** the interaction of acceptable normal force $N_{Rd,z}$ [kN/element] and moment loading $M_{Rd,y}$ [kN/element] is presented graphically. The verification is met if the intersection point from inormal force $N_{Ed,z}$ [kN/element] and moment $M_{Ed,y}$ [kN/element] lies below or at the graphs applicable for the respective Schöck Isokorb[®] type.

Design variant C:

In the Interactions table the allowable moments $M_{Rd,y}$ [kN/Element] are given depending on the acceptable normal force $N_{Rd,z}$ [kN/element].


Design variant A: Design table

Schöck Isoko	orb® XT type A	MM1	MM2			
Design v	alues with	Concrete strength class ≥ C25/30				
		M _{Rd,y} [kNm	n/element]			
	160 - 190	\leq 1,75 - 0,046 · N _{Ed,z}	\leq 4,40 - 0,046 · N _{Ed,z}			
	200 - 250	≤ 1,75 – 0,046 • N _{Ed,z}	≤ 6,13 - 0,066 • N _{Ed,z}			
la a la a ula ®		N _{Rd,z} [kN/Element]				
Isokorb® width [mm]	160 - 190	$\leq 38,04 - \frac{ M_{Ed,y} }{0,046}$	≤ 95,65 - M _{Ed,y} 0,046			
	200 - 250	$\leq 38,04 - \frac{ M_{Edy} }{0,046}$	$\leq 92,89 - \frac{ M_{Ed,y} }{0,066}$			
		V _{Rd,x} [kN/Element]				
	160 - 250	±5.8	±7.1			

Schöck Isokorb® XT type A	MM1	MM2
Isokorb® length [mm]	250	250
Tension bars/compression bars	2 × 2 Ø 8	2 × 3 Ø 8
Shear force bars	1Ø6+1Ø6	1 Ø 6 + 1 Ø 6
Connection stirrup	2 Ø 8	4 Ø 8
Parapet/balustrade B _{min}	160	160
Floor h _{min} [mm]	160	160

Design variants

Design variant B: Design diagram

Design variant C: Interaction table

Schöck Isokorb® XT type A		MM1 (B = 160 - 250)	MM2 (B = 160 - 190)	MM2 (B = 200 - 250)		
Design values with		Concrete strength class ≥ C25/30				
		M _{Rdy} [kNm/element]				
	0.0	±1.7	±4.4	±6.1		
	5.0	±1.5	±4.2	±5.8		
	10.0	±1.3	±3.9	±5.5		
N _{Rd,z} [kN/Element]	15.0	±1.1	±3.7	±5.1		
	20.0	±0.8	±3.5	±4.8		
	25.0	±0.6	±3.3	±4.5		
	30.0	±0.4	±3.0	±4.2		

Notes on design

- The design values of the Schöck Isokorb® XT type A apply for an identically directed action, i.e. negative shear force with positive moment or positive shear force with negative moment. The Schöck Isokorb® XT type F is recommended for further combinations.
- ► The design values are given for a concrete strength class ≥ C25/30 on the parapet/balustrade side and ≥ C20/25 on the floor side.
- ▶ The design values for a concrete strength class \geq C25/30 are given for balustrade side and floor side.
- The shear force loading of the slabs in the area of the insulation joint is to be limited to $V_{Rd, max}$, whereby $V_{Rd, max}$, acc. to BS EN 1992-1-1 (EC2), Exp. (6.9) is determined for θ = 45 ° and α = 90 ° (slab load-bearing capacity).
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.

Expansion joint spacing

Maximum expansion joint spacing

Expansion joints are to be arranged in the external structural components. The longitudinal change due to temeperature is related to the maximum distance e_a of the outer edges of the outermost Schöck Isokorb[®] types. With this the outer structural component can project laterally over the Schöck Isokorb[®].

With fixed points such as, for example corners, half the maximum length ea applies.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

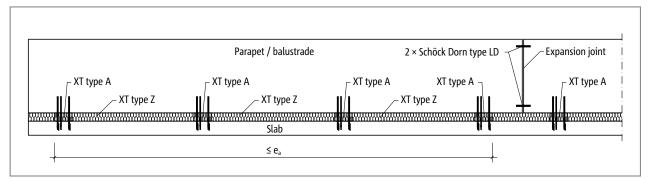


Fig. 221: Schöck Isokorb® XT type A: Expansion joint arrangement

Schöck Isokorb® XT type A		MM1, MM2
Spacing		e _a [m]
Insulating element thickness [mm] 1	120	23.0

Edge spacing

Edge distances

The Schöck Isokorb[®] must be so arranged at the expansion joint that the following conditions are met:

- For the distance of the insulation member from the edge of the balustrade or of the insulation joint in the balustrade the following applies: $e_R \ge 10$ mm.
- For the distance of the insulation member from the edge of the floor the following applies $e_R \ge 75$ mm.
- For the distance of the connection stirrup from the edge of the floor the following applies: $e_R \ge 100$ mm.

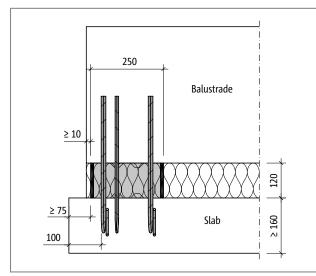
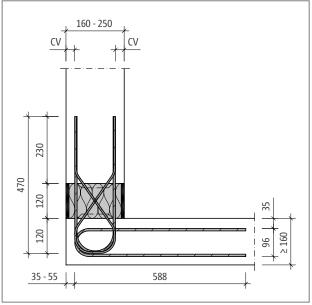



Fig. 222: Schöck Isokorb® XT type A: View edge distances

Edge distances

The edge distances in floor and balustrade are not required to be the same.

Product description

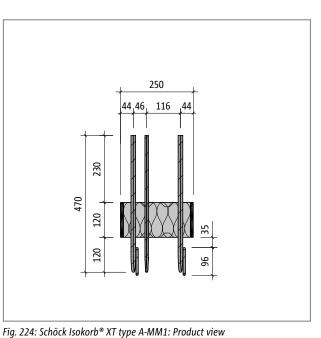


Fig. 223: Schöck Isokorb® XT type A-MM1: Product section

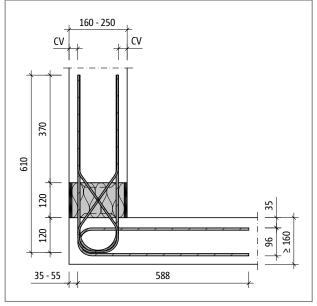


Fig. 225: Schöck Isokorb® XT type A-MM2: Product section

i **Product information**

- Note minimum width of parapet or balustrade B_{min} = 160 mm, minimum floor height h_{min} = 160 mm.
- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- The concrete cover of the connection stirrup should be at least 35 mm.

250 44,46,35,81 370 610 120 120

96

Fig. 226: Schöck Isokorb® XT type A-MM2: Product view

Concrete cover

Concrete cover

The concrete cover CV of the Schöck Isokorb[®] XT type A varies depending on the width of the parapet. As only ribbed reinforcement steels are used for reinforcement of the parapet in the area of the Schöck Isokorb[®], there is no risk of corrosion. Therefore also with an exposure class XC4 a concrete cover in the area of the Schöck Isokorb[®] XT type A of CV = 25 mm is sufficient.

Schöck Isoko	orb® XT type A	MM1, MM2
Concrete	cover with	CV [mm]
	160	30
	170	35
	180	40
	190	45
lsokorb®	200	30
width [mm]	210	35
	220	40
	230	45
	240	50
	250	55

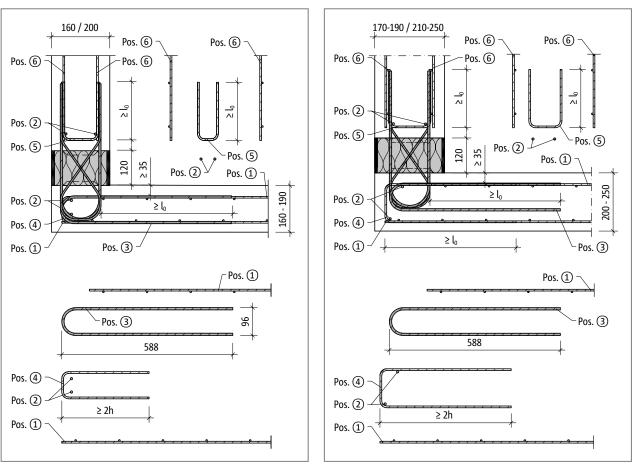


Fig. 227: Schöck Isokorb® XT type A: On-site reinforcement on the inside (B = 160 and B = 200)

The reinforcement of the reinforced concrete slab is determined from the structural engineer's design. With this the effective moment, the effective normal force and the effective shear force should be taken into account.

In addition, it is to be ensured that the tension bars of the Schöck Isokorb[®] are 100% lapped. The existing floor reinforcement can be taken into account so far as the maximum separation to the tension bars of 4Ø is maintained. Additional reinforcement may be required.

On-site reinforcement

Recommendation for the on-site connection reinforcement

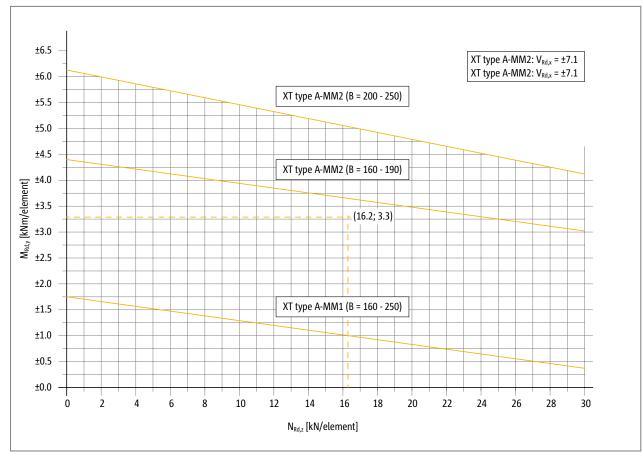
Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; positively selected: a_s lapping reinforcement $\ge a_s$ Isokorb[®] tension bars/compression members.

Schöck Isoko	rb® XT type A	MM1	MM2				
	Location	Concrete strength class ≥ C25/30					
Pos. 1 Lapping reinforcement							
Pos. 1 [mm ² /Element]	Floor side	100	201				
Lap length l ₀ [mm]	Floor side	451	451				
Pos. 2 Steel bars along the insula	Pos. 2 Steel bars along the insulation joint						
Pos. 2	floor side/balustrade side	4 · H8	4 • H8				
Pos. 3 Factory supplied connection	on stirrup						
Pos. 3	Floor side	2 • H8	4 • H8				
Pos. 4 supplementary edge reinfo	orcement						
Pos. 4	Floor side	Ø 6/200	Ø 6/200				
Pos. 5 Stirrup as suspension reinf	forcement						
Pos. 5	balustrade side	H8@250	H8@250				
Lap length l ₀ [mm]	balustrade side	200	332				
Pos. 6 Lapping reinforcement	Pos. 6 Lapping reinforcement						
Pos. 6 [mm ² /Element]	balustrade side	100	151				
Lap length l ₀ [mm]	balustrade side	200	332				

Information about on-site reinforcement

- Alternative connection reinforcement is possible. For the determination of the lap length, the rules according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA apply FA reduction of the required lap length with m_{Ed}/m_{Rd} is permitted.
- ▶ For the reinforcing steel connection stirrups supplied ex works, the upper concrete cover c_v in the floor slab is to be selected dependent on the exposure class.
- With the Schöck Isokorb[®] widths B=150, 160, 200 the concrete cover CV is ≤ 35 mm. The reinforcement is therefore to be arranged within the tension/compression bars.
- The indicative minimum concrete strength class of the external structural component is C32/40.

Design example


Design example

Given:	Concrete f	loor	C25/30,	
	Concrete	parapet	C25/30	
Parapet	B	- = 200 mm		
	h₀	= 1.00 m		
Loading:				
Self-weight and extension	g _k	= 6 kN/m		
Wind	– W _k	= 0.8 kN/m ²		
Beam load	q _k	= 1.0 kN/m		
Selected:	Schöck Isokorb® XT type A-MM2 B = 200 mm			
	Spacing $a_{prov} = 2.00 \text{ m}$			
Impact per Schöck Isokorb®				
	$N_{Ed,z}$	= $\gamma_{G} \cdot g_{k} \cdot a_{prov}$		
	N _{Ed,z}	= 1.35 • 6 kN/m • 2	2.00 m = 16.2 kN	
	$V_{Ed,x}$	$= - (\gamma_Q \cdot W_k \cdot h_B + f$	$\gamma_{Q} \cdot \psi_{0} \cdot q_{k}) \cdot a_{prov}$	
	$V_{Ed,x}$	= - (1.5 • 0.8 kN/m	² •1.00 m + 1.5 • 0.7 • 1.0 kN/m) • 2.0 m = - 4.5 kN	
	$M_{Ed,y}$	$= (\gamma_Q \cdot w_k \cdot h^2_B/2 +$	$ \gamma_{Q} \cdot \psi_{0} \cdot q_{k} \cdot h_{B}) \cdot a_{prov} $	
	$M_{Ed,y}$	= (1.5 • 0.8 kN/m ²	• 1.0 m ² /2 + 1.5 • 0.7 • 1.0 kN/m • 1.0 m) • 2.0 m = 3.3 kNm	
Note:	For the verification with selected or given spacing a, a design variant is sufficient. Alternatively the			
	verification of the maximum centre distances suffices page 156.			
Design variant A				
Design table	Schöck Isokorb® XT type A-MM2 B = 200 mm			
Moment load-bearing capacit		≤ 6.13 - 0.066 • N _E		
······································	M _{Rd,v}	≤ 6.13 - 0.066 • 16		
	⇒		$M_{Rd,y} = 5.1 \text{ kNm} \rightarrow \text{NW o.k. } \checkmark$	
Shear force load-bearing capa	acitv	V _{Rd.x}	= - 7.1 kN	
· · · · · · · · · · · · · · · · · · ·	⇒	.,	$_{d,x} = -7.1 \text{ kN} \rightarrow \text{NW o.k. } \checkmark$	
Note:	As this concerns an interaction, either the moment verification or the verification of the normal			
	force suffices.			

Design example

Design model B

Design diagram

The point (($N_{Ed,z}$; $M_{Ed,y}$) = (16.2 kN; 3.3 kNm) lies below the line of the Schöck Isokorb[®] XT type A-MM2 (B = 200 - 250). Thus the verification is rendered.

Shear force load-bearing capacity

 $M_{Ed,y} = 3.3 \text{ kNm} \le M_{Rd,y} = \pm 4.8 \text{ kNm} \rightarrow \text{NW o.k.} \checkmark$ $N_{Ed,z} = 16.2 \text{ kN} \le N_{Rd,z} = 20 \text{ kN} \rightarrow \text{NW o.k.} \checkmark$ $V_{Rd,x} = -7.1 \text{ kN}$ $V_{Ed,x} = -4.5 \text{ kN} \le V_{Rd,x} = -7.1 \text{ kN} \rightarrow \text{NW o.k.} \checkmark$

⇒

Schöck Combar® FT erection support

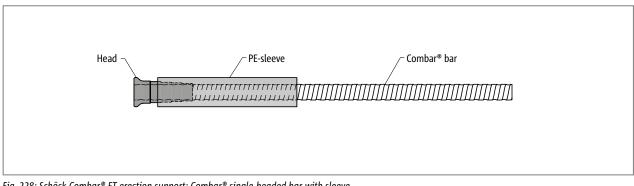


Fig. 228: Schöck Combar® FT erection support: Combar® single-headed bar with sleeve

Schöck Combar® type	FT erection support L=650 mm	FT erection support L=850 mm
Diameter [mm]	25	25
Bar length [mm]	650	850
Max. load per support [kN]	30	30
Max. free length [mm]	500	500
Min. anchoring length FT [mm]	250	250

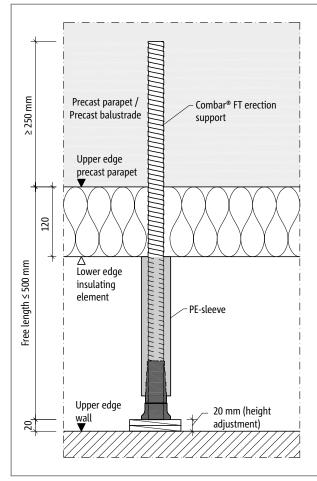
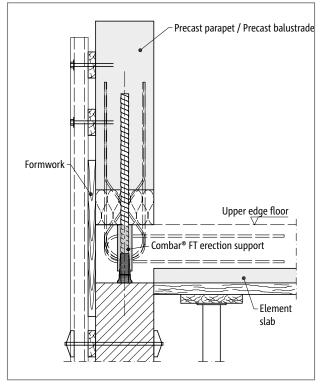



Fig. 229: Schöck Combar® FT erection support: planning dimensions

Schöck Combar® FT erection support

Fig. 230: Schöck Combar® FT erection support: Installation in a precast concrete parapet; section

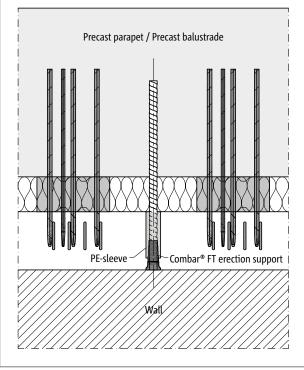
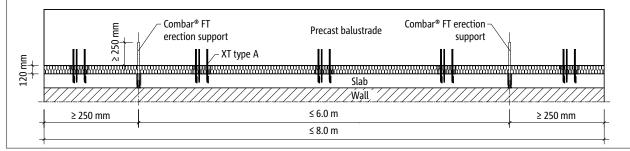


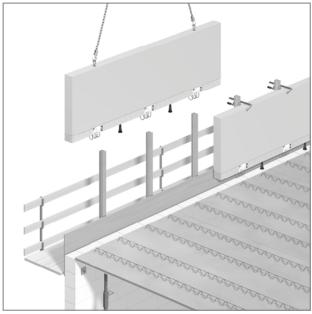
Fig. 231: Schöck Combar® FT erection support: Installation in a precast concrete parapet; view

🚺 Product

- ▶ The Schöck Combar[®] FT erection support, in the structural condition can only accept the given load in the short-term.
- ▶ The Schöck Combar[®] FT erection support is to be used only in conjunction with the Schöck Isokorb[®] XT type A.
- The sleeve is structurally necessary and is concreted into the floor (avoidance of constraint between prefabricated part and floor).

Area of application




Fig. 232: Schöck Isokorb® XT type A with Combar® FT erection support: Edge distance and minimum bond length in the prefabricated parapet

Precast concrete balustrades/precast concrete parapets

- ▶ Total weight ≤ 60 kN (30 kN/Combar® FT erection support)
- Overall length \leq 8.0 m
- ▶ Thickness ≥ 150 mm
- Concrete strength class ≥ C25/30
- Reinforcement inside and outside
- ▶ Number of Schöck Combar[®] FT erection supports per precast concrete part ≤ 2

XT type A

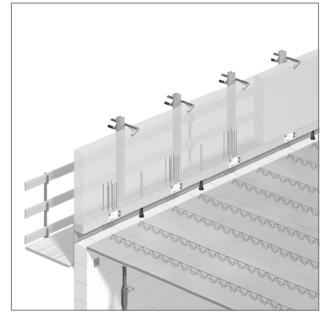
Schöck Combar® FT erection support

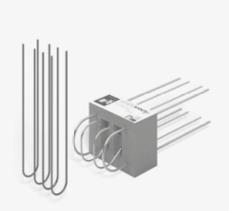
Installation precast concrete balustrade/precast concrete parapet

Fig. 233: Schöck Isokorb® XT type A with Combar® FT erection support: Hoisting of the prefabricated attic

Installation

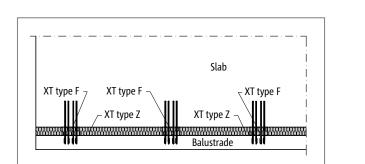
- The sleeve is part of the product.
- Mount parapet.
- Place parapet at the installation point and adjust height using adjustment shims.
- Secure using c-clamps.
- Install connection stirrups.




Fig. 234: Schöck Isokorb® XT type A with Combar® FT erection support: Securing of the aligned precast concrete parapet

XT type A

🗹 Check list


- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the maximum separation of the outermost Schöck Isokorb® types as a result of expansion in the outer structural components been maintained?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?

Schöck Isokorb® XT type F

Schöck Isokorb® XT type F

Suitable for frontally attached balustrades. It transfers normal forces, positive and negative moments and shear forces.

Element arrangement | Installation cross sections

Fig. 235: Schöck Isokorb® XT type F, Z: Frontally attached balustrades

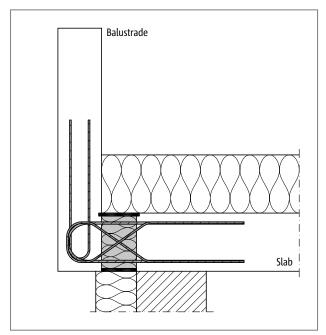
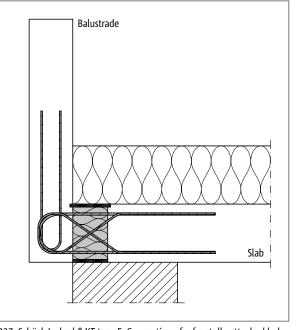



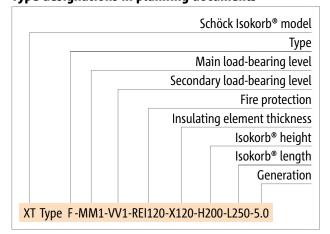
Fig. 236: Schöck Isokorb® XT type F: Connection of a frontally attached balustrade with thermal insulation composite system (TICS))

Element arangement/installation cross-section

I- Fig. 237: Schöck Isokorb® XT type F: Connection of a frontally attached balustrade with thermal insulating masonry

▶ For the insulation between the Schöck Isokorb® the Schöck Isokorb® XT type Z (see page 135) is available in fire protective configuration.

XT type F

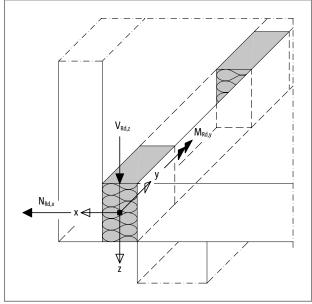

Product selection | Type designations | Special designs

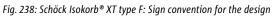
Schöck Isokorb® XT type F variants

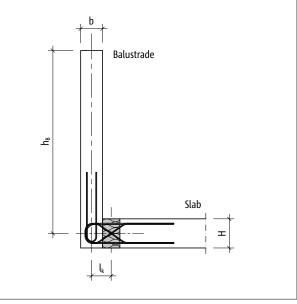
The configuration of the Schöck Isokorb® XT type F can be varied as follows:

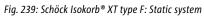
- Main load-bearing level:
 - MM1
- Secondary load-bearing level: VV1
- Fire resistance class:
- REI120 (standard): Top and bottom fire protection projecting by 10mm on both sides
- Insulating element thickness:
- X120 = 120 mm
- Isokorb[®] height:
- H = 160 250 mm
- Isokorb[®] length:
- L = 250 mm
- Generation:
 5.0

Type designations in planning documents


Special designs


Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).


In accordance with approval heights up to 500 mm are possible.


Design force direction

Direction of forces

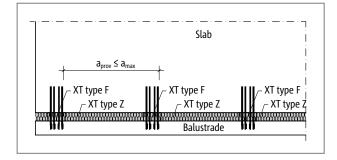
Determination of spacing

Determination of the maximum centre-to-centre distance

The maximum spacing a_{max} of several Schöck Isokorb[®] XT type F depends on the imoments $m_{Ed,y}$, normal forces $n_{Ed,x}$ and shear forces vEd,z. It can be determined with the aid of the following described procedure.

Verification is achieved if the selected separation a_{prov} is $\leq a_{max} = min (a_{max,1}; a_{max,2})$. Then there is no further verification necessary.

Procedure:


Determination of a_{max,1} (diagram)

The maximum spacing $a_{max,1}$ of several Schöck Isokorb[®] XT type F can be determined, depending on the imoments $m_{Ed,y}$ and normal forces, $n_{Ed,x}$, with the aid of the following diagram.

- Determination of the impacting moments m_{Ed,y} and normal forces n_{Ed,x}
- Calculation of the ration n_{Ed,x}/m_{Ed,y}
- Read up the righthand axisfor n/musing the calculated ratio ①(with negative normal force left, with positive normal force right)
- > Draw horizontal line up to intersection point using the graphs (Take note of Schöck Isokorb® type and height)
- **b** Draw vertical line in the intersection point and read $N_{Rd,x}$ (intersection of the vertical line with $N_{Rd,x}$ -axis) (2)
- Determination of the maximum distance: a_{max,1} = N_{Rd,x}/n_{Ed,x}

Determination a_{max,2}

The maximum spacing $a_{max,2}$ of several Schöck Isokorb[®] XT type F depending on the impacting shear force is determined through the ratio $a_{max,2} = V_{Rd,2}/v_{Ed,2}$.

Determination of spacing

For n_{ed,z} = 0 or m_{ed,y} = 0, use design variants A, B, or C.

🧾 Design example

Numerical example for the determination of the spacing see XT type A page 156.

XT type F (H = 200 - 250)

-3

-4

Detailed extract diagram spacing C25/30 (-5 < N_{Rd,z} < 5 [kN/element])

for $N_{Rd,x}$ [-]

-1

0.0

N_{Rd,x} [kN/element]

XT type F (H = 160 - 190)

-2

for $N_{\text{Rd},x}\left[\ + \ \right]$

1

XT type F (H = 160 - 190)

2

XT type F (H = 200 - 250)

4

3

±3.5

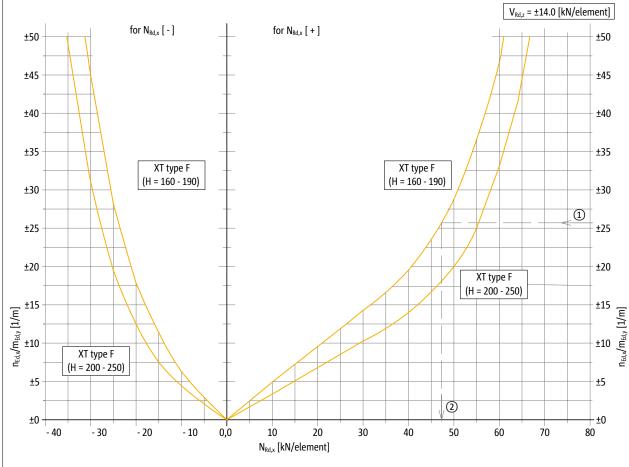
±3.0 ±2.5

±2.0

±1.5

±1.0

±0.5


±0.0

-5

n_{Edx}/m_{Edy} [1/m]

Determination of spacing

Diagram determination of the spacing C25/30

XT type F

V_{Rd,z} = ±14.0 [kN/element]

±3.0

±2.5

±2.0

:1.5

1.0

±0.5

±0.0

5

 $n_{ed,x}/m_{ed,y} [1/m]$

Design variants C25/30

The Schöck Isokorb[®] XT type F, independent of the allowable normal force $N_{Rd,x}$ and of the allowable moments $M_{Rd,y}$, has a constant allowable shear force $V_{Rd,z}$. The allowable moment $M_{Rd,y}$ and the allowable normal force $N_{Rd,x}$ condition each other in an interaction.

For the design of the Schöck Isokorb® XT type F there are three design variants A, B, C available.

Design variant A:

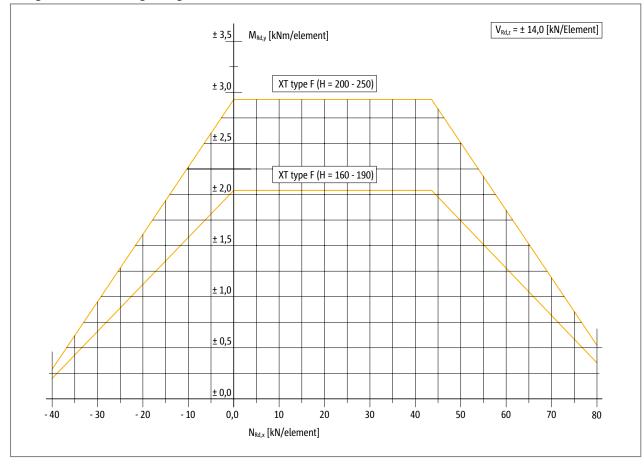
In the design table the interaction formula is given, solved once according to the alowable moment $M_{Rd,y}$ [kNm/element] depending on normal force $N_{Ed,z}$ [kN/element] and solved once according to the allowable normal force $N_{Rd,z}$ [kN/element] depending on a moment $M_{Ed,y}$ [kNm/element]. Verification met: $N_{Ed,x} \le N_{Rd,x}(M_{Ed,y})$ or $M_{Ed,y} \le M_{Rd,y}(N_{Ed,x})$ and $V_{Ed,z} \le V_{Rd,z}$

Design variant B:

In the **design diagram** the interaction of allowable normal force $N_{Rd,x}$ [kN/element] and moment loading $M_{Rd,y}$ [kN/element] is presented graphically. The verification is met if the intersection point from normal force $N_{Ed,x}$ [kN/element] and moment $M_{Ed,y}$ [kN/element] lies below or on the respective Schöck Isokorb[®] type applicable graphs.

Design variant C:

In the **interaction table** the allowable moments $M_{Rd,y}$ [kN/element] are given depending on the normal force $N_{Rd,x}$ [kN/element].


Design variant A: Design table

Schöck Isokorb® XT type F		MM1		
Design values with		Floor (XC1) concrete strength class ≥ C25/30 Balustrade (XC4) concrete strength class ≥ C25/30		
		for	M _{Rd,y} [kNm/element]	
lsokorb® height H [mm]		$-40 \le N_{Ed,x} < 0$	± 2.04 + 0.046 · N _{Ed,x}	
	160 - 190	$0 \leq N_{Ed,x} \leq 43.2$	±2.04	
		$43.2 < N_{Ed,x} \le 80$	± 4.03 - 0.046 · N _{Ed,x}	
	200 - 250	$-40 \le N_{Ed,x} < 0$	± 2.93 + 0.066 · N _{Ed,x}	
		$0 \le N_{Ed,x} \le 43.2$	±2.93	
		$43.2 < N_{Ed,x} \le 80$	± 5.78 - 0.066 · N _{Ed,x}	
		V _{Rd,z} [kN/element]		
	160 - 250	±14.0		

Schöck Isokorb® XT type F	MM1
Isokorb® length [mm]	250
Tension bars/compression bars	2 × 2 Ø 8
Shear force bars	2 Ø 6 + 2 Ø 6
Connection stirrup	4 Ø 6
Balustrade b _{min} [mm]	160
Floor h _{min} [mm]	160

Design variants C25/30

Design variant B: Design diagram

Design variant C: Interaction table

Schöck Isokorb® XT type F		MM1 (H = 160 - 190)	MM1 (H = 200 - 250)	
Design val	ues with	Floor (XC1) concrete strength class ≥ C25/30 Balustrade (XC4) concrete strength class ≥ C25/30		
		M _{Rd,y} [kNm/element]		
	-40.0	±0.20	±0.29	
	-30.0	±0.66	±0.95	
	-20.0	±1.12	±1.61	
	-10.0	±1.58	±2.27	
N _{Rd,x} [kN/Element]	0 - 40.0	±2.04	±2.93	
	50.0	±1.73	±2.48	
	60.0	±1.27	±1.82	
	70.0	±0.81	±1.16	
	80.0	±0.35	±0.50	

🚺 Notes on design

- ▶ The design values for a concrete strength class ≥ C25/30 are given for balustrade side and floor side.
- The shear force loading of the slabs in the area of the insulation joint is to be limited to $V_{Rd, max}$, whereby $V_{Rd, max}$, acc. to BS EN 1992-1-1 (EC2), Exp. (6.9) is determined for θ = 45 ° and α = 90 ° (slab load-bearing capacity).
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.

Design example

Numerical example for the determination of the spacing see XT type A page 156.

XT type F

Expansion joint spacing | Edge spacing

Maximum expansion joint spacing

Expansion joints are to be arranged in the external structural components. The longitudinal change due to temeperature is related to the maximum distance e_a of the outer edges of the outermost Schöck Isokorb[®] types. With this the outer structural component can project laterally over the Schöck Isokorb[®].

With fixed points such as, for example corners, half the maximum length e_a applies.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

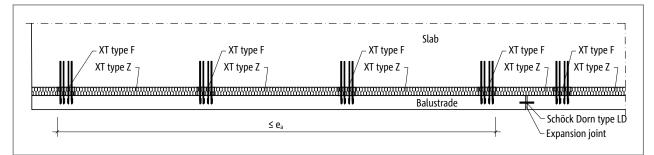


Fig. 240: Schöck Isokorb® XT type F: Expansion joint arrangement

Schöck Isokorb® XT type F		MM1
Spacing		e _a [m]
Insulating element thickness [mm] 120		23.0

Edge distances

The Schöck Isokorb® must be so arranged at the expansion joint that the following conditions are met:

- For the distance of the insulation member from the edge of the floor the following applies: $e_R \ge 10$ mm.
- For the distance of the insulation member from the edge of the balustrade or of the insulation joint the following applies: $e_R \ge 75$ mm.
- For the distance of the connection stirrup from the edge of the balustrade or of the insulation joint in the balustrade the following applies: $e_R \ge 100$ mm.

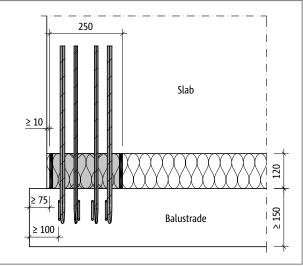
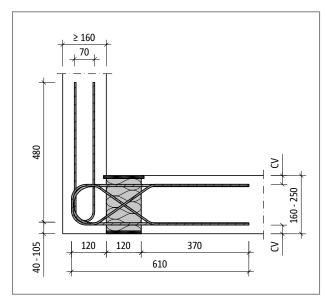



Fig. 241: Schöck Isokorb® XT type F: Top view edge distances

Product description | Concrete cover



Fig. 242: Schöck Isokorb® XT type F: Product section

Fig. 243: Schöck Isokorb® XT type F: Product plan view

Product information

- Note minimum width of the parapet b_{min} = 160 mm, minimum floor height H_{min} = 160 mm.
- Download further product plan views and cross-sections at www.schoeck.co.uk/download

Concrete cover

The concrete cover CV of the Schöck Isokorb[®] XT type F varies depending on the floor height. As only stainless, ribbed reinforcing steels are used for the reinforcement of the parapet/balustrade in the area of the Schöck Isokorb[®] there is no risk of corrosion. Therefore, even with an exposure class XC4 a concrete cover in the area of the Schöck Isokorb[®] XT type F of CV = 30 mm is sufficient.

For the reinforcing steel connection stirrups supplied ex works, the concrete cover c_v in the floor slab is to be selected dependent on the exposure class.

Schöck Isokorb® XT type F		MM1	
Concrete c	over with	CV [mm]	
	160	30	
	170	35	
	180	40	
	190	45	
Isokorb® height H	200	30	
[mm]	210	35	
	220	40	
	230	45	
-	240	50	
	250	55	

Reinforced concrete – reinforced concrete

On-site reinforcement

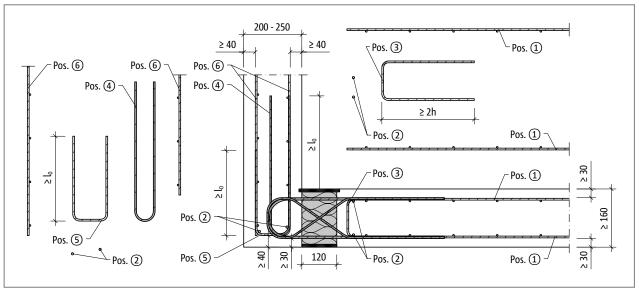


Fig. 244: Schöck Isokorb[®] XT type F: On-site reinforcement with parapet/balustrade width b = 200 - 250; on-site reinforcement b = 160 - 190 such as b = 200 - 250 without Pos. 5

The reinforcement of the reinforced concrete slab is determined from the structural engineer's design. With this the effective moment, the effective normal force and the effective shear force should be taken into account.

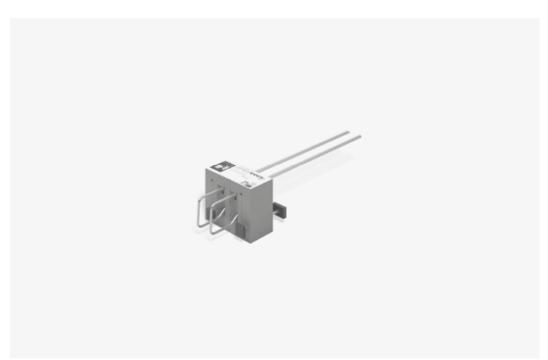
In addition, it is to be ensured that the tension bars of the Schöck Isokorb[®] are 100% lapped. The existing floor reinforcement can be taken into account so far as the maximum separation to the tension bars of 4Ø is maintained. Additional reinforcement may be required.

On-site reinforcement

Recommendation for the on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; positively selected: a_s lapping reinforcement $\ge a_s$ Isokorb[®] tension bars/compression members.

Schöck Isoko	rb® XT type F	MM1			
On-site reinforcement	Location	Concrete strength class ≥ C25/30			
Pos. 1 Lapping reinforcement					
Pos. 1 [mm ² /Element]	Floor side	100			
Lap length l₀ [mm]	Floor side	332			
Pos. 2 Steel bars along the insula	ntion joint				
Pos. 2	floor side/balustrade side	4 · H8			
Pos. 5 Stirrup as suspension reinf	forcement				
Pos. 3	Floor side	H8@250			
Pos. 3 Factory supplied connection	on stirrup				
Pos. 4	balustrade side	4 · H8			
Pos. 5 Structural edging (dispens	ed with for b = 160 - 190 mm)				
Pos. 5	balustrade side	H8@200			
Lap length l₀ [mm]	balustrade side	340			
Pos. 6 Lapping reinforcement					
Pos. 6 [mm ² /Element]	balustrade side	113			
Lap length l ₀ [mm]	balustrade side	340			


Information about on-site reinforcement

- Alternative connection reinforcement is possible. For the determination of the lap length, the rules according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA apply FA reduction of the required lap length with m_{Ed}/m_{Rd} is permitted.
- Pos. 5 may be dispensed with for the on-site reinforcement for balustrade widths b = 160 190 mm (without diagram).
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.

🗹 Check list

- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Have the concrete cover and the appropriate concrete grade been taken into consideration according to the building regulations?
- Has the maximum separation of the outermost Schöck Isokorb[®] types as a result of expansion in the outer structural components been maintained?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?

Schöck Isokorb® XT type O

Schöck Isokorb® XT type O Suitable for corbels. It transmits positive shear forces and normal forces.

Element arrangement | Installation cross sections

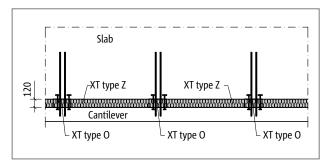


Fig. 245: Schöck Isokorb® XT type O, Z: Corbel

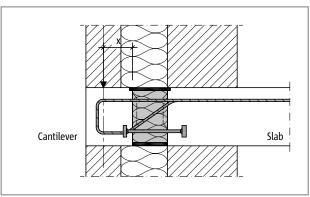


Fig. 246: Schöck Isokorb® XT type O: Corbel with faced masonry

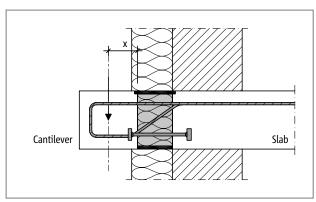


Fig. 248: Schöck Isokorb® XT type O: circumferential cornice

Element arangement/installation cross-section

- ▶ For the insulation between the Schöck Isokorb® the Schöck Isokorb® XT type Z (see page 135) is available in fire protective configuration.
- For surrounding cornices larger cantilever depths are also available to maintain the specific edge conditions.

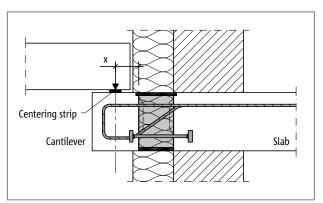
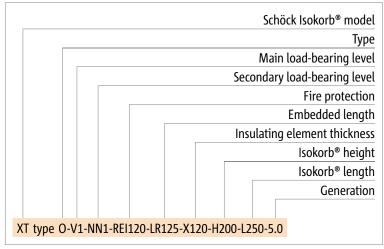


Fig. 247: Schöck Isokorb® XT type O: Connection of a console as floor support; centring battens prevent a displacement of the load application point

XT ype O


Product selection | Type designations | Special designs

Schöck Isokorb® XT type O variants

The configuration of the Schöck Isokorb[®] XT type O can vary as follows:

- Corbele depths: LR125: Corbel depth 160 mm (CV35) and 155 mm (CV30) LR165: Corbel depth 200 mm (CV35) and 195 mm (CV30)
- Main load-bearing level: V1
- Secondary load-bearing level: NN1
- Fire resistance class:
- REI120 (standard): Top and bottom fire protection projecting by 10mm on both sides
- Bond length: LR
- Insulating element depth:
- X120 = 120 mm Isokorb® height:
- H = 180 250 mm
- Isokorb® height:
 - L = 250 mm
- Generation: 5.0

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

In accordance with approval heights up to 500 mm are possible.

C25/30 design

Schöck Isokorb® XT type O		LR125	LR165	
Design values with		Balcony-side concrete strength class ≥ C25/30 Floor-side concrete strength class ≥ C25/30		
		V _{Rd,z} [kN/	element]	
	60 - 75	25.1	25.1	
	85	24.2	24.2	
	95	23.1	23.1	
	105	22.2	22.2	
Position of the load	115		21.3	
application point [mm]	125		20.5	
[]	135		19.8	
	145		19.1	
		N _{Rd,x} [kN/Element]		
		≤ ±1/10 V _{Ed,z}	$\leq \pm 1/10 V_{Ed,z}$	

Schöck Isokorb [®] XT type O	LR125	LR165	
Isokorb® length [mm]	250	250	
Tension/compression bars	2 Ø 8	2 Ø 8	
Pressure bearing (piece)	2 Ø 10	2 Ø 10	
Maximum distance x _{max} [mm]	105	145	
Minimum height floor H _{min} [mm]	180	180	

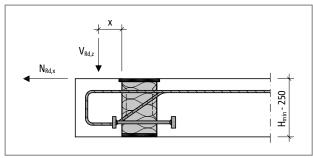


Fig. 249: Schöck Isokorb® XT type O: Distance of the load application point x (load distance point)

Notes on design

- The shear force loading of the slabs in the area of the insulation joint is to be limited to $V_{Rd, max}$, whereby $V_{Rd, max}$, acc. to BS EN 1992-1-1 (EC2), Exp. (6.9) is determined for θ = 45 ° and α = 90 ° (slab load-bearing capacity).
- \blacktriangleright The allowable normal force N_{Rd,x} is dependent on the actual effective shear force V_{Ed,z}
- The indicative minimum concrete strength class of the external structural component is C32/40.

Expansion joint spacing | Edge spacing

Maximum expansion joint spacing

Expansion joints are to be arranged in the external structural components. The longitudinal change due to temeperature is related to the maximum distance e_a of the outer edges of the outermost Schöck Isokorb[®] types. With this the outer structural component can project laterally over the Schöck Isokorb[®].

With fixed points such as, for example corners, half the maximum length ea applies.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

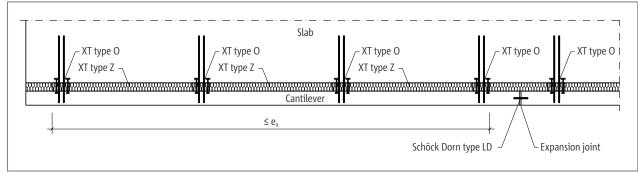


Fig. 250: Schöck Isokorb® XT type O: Expansion joint arrangement

Schöck Isokorb® XT type O		LR125, LR165	
Spacing		e _a [m]	
Insulating element thickness [mm] 120		21.7	

Edge distances

The Schöck Isokorb[®] must be so arranged at the expansion joint that the following conditions are met:

The distance of the insulation member from the edge of the structural component or of the expansion joint: $e_R \ge 30$ mm applies.

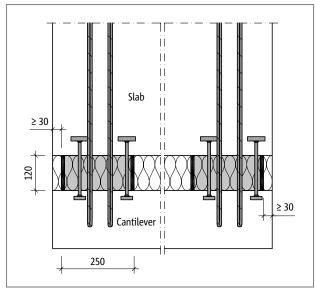
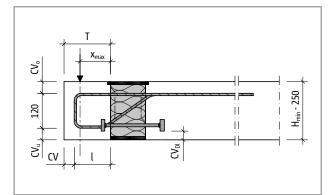



Fig. 251: Schöck Isokorb® XT type O: Edge distances to be observed

Product description | Concrete cover

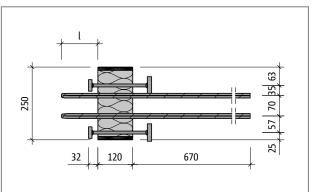
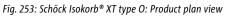



Fig. 252: Schöck Isokorb® XT type O: Product section

Schöck Isokorb [®] XT type O	LR125	LR165	
Isokorb® length [mm]	250	250	
Loop length l [mm]	125	165	
Maximum distance x _{max} [mm]	105	145	
Cantilever depth T (CV30) [mm]	155	195	
Cantilever depth T (CV35) [mm]	160	200	
Minimum height floor H _{min} [mm]	180	180	

Concrete cover

The concrete cover CV_o , CV_u and CV_{Dl} of the Schöck Isokorb[®] XT type O vary depending on the floor height. As only stainless, ribbed reinforcing steels are used for the reinforcement of the crbel in the area of the Schöck Isokorb[®], there is no risk of corrosion. Therefore, even with an exposure class XC4 a concrete cover in the area of the Schöck Isokorb[®] XT type O of CV = 30 mm is sufficient.

Schöck Isokorb® XT type O		LR125, LR165			
Concrete cover with		CV₀	CVu	CV _{DI}	
	180	30	30	30	
	190	35	35	35	
lsokorb® height H [mm]	200	40	40	30	
	210	45	45	35	
	220	50	50	40	
	230	50	60	50	
	240	50	70	60	
	250	50	80	70	

Product information

Download further product plan views and cross-sections at www.schoeck.co.uk/download

On-site reinforcement

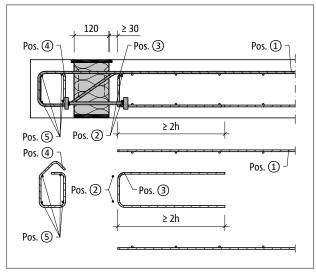


Fig. 254: Schöck Isokorb® XT type O: On-site reinforcement

The reinforcement of the reinforced concrete slab is determined from the structural engineer's design. With this the effective moment, the effective normal force and the effective shear force should be taken into account.

In addition, it is to be ensured that the tension bars of the Schöck Isokorb[®] are 100% lapped. The existing floor reinforcement can be taken into account so far as the maximum separation to the tension bars of 4Ø is maintained. Additional reinforcement may be required.

Recommendation for the on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; positively selected: a_s lapping reinforcement $\ge a_s$ Isokorb[®] tension bars/compression members.

Schöck Isokorb® XT type O		LR125, LR165		
On-site reinforcement	Location	Concrete strength class ≥ C25/30		
Pos. 1 Lapping reinforcement				
Pos. 1 [mm ² /Element]	Floor side	200		
Lap length l₀ [mm]	Floor side	640		
Pos. 2 Steel bars along the insula	ition joint			
Pos. 2	Floor side	2 • H8		
Pos. 5 Stirrup as suspension reinf	Pos. 5 Stirrup as suspension reinforcement			
Pos. 3	Floor side	H8@250		
Pos. 4 Stirrup				
Pos. 4	Cantilever side	5 · H8		
Pos. 5 Steel bar along the insulat	ion joint			
Pos. 5	Cantilever side 4 · H8 or acc. to static requirements			

Information about on-site reinforcement

Alternative connection reinforcements are possible. The rules according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA apply for the determination of the lap length. A reduction of the required lap length with V_{Ed}/V_{Rd} is permitted.

The indicative minimum concrete strength class of the external structural component is C32/40.

Design example

Wall structure design example

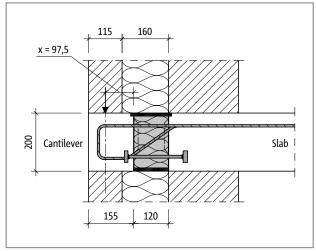
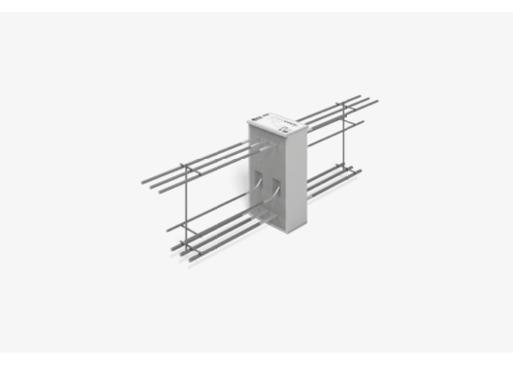


Fig. 255: Schöck Isokorb® XT type O: Wall construction for design example

XT type O

Reinforced concrete – reinforced concrete


Design example

Given:	Console side concrete	C25/30			
	Floor side concrete	C25/30			
	Total length of the console l = 15.00 m				
	Height of the outer m	asonry shell: h _{MW} = 2.50 m			
	-	r masonry shell: d_{MW} = 11.5 cm			
		ation material: $d_{D} = 16$ cm			
		resp. thickness of floor: h _{Concrete} = 20 cm			
	Wind load	$n_{Ed,x} = 1.0 \text{ kN/m}^2$			
		to account for the wind load: $h_{Wind} = 0.60 \text{ m}$)			
	Specific weight concr	-			
	Specific weight maso				
Sought:	Required number Sch	öck Isokorb [®] XT type O related to the overall length of the console.			
Shear force:	$V_{Ed,z,ges.} = \gamma_G \cdot l \cdot (\gamma_{ed})$	$\gamma_{MW} \cdot h_{MW} \cdot d_{MW} + \gamma_{Concrete} \cdot h_{Concrete} \cdot T_{Consol}$			
		$5.00 \text{ m} \cdot (22.00 \text{ [kN/m}^3] \cdot 2.50 \text{ m} \cdot 0.115 \text{ m} + 25.00 \text{ [kN/m}^3] \cdot 0.20 \text{ m} \cdot 0.155 \text{ m})$			
		• _{Ed,x} · h _{Wind} = 1.5 · 15.00 m · 1.0 [kN/m²] · 0.60 m = 13.5 kN			
Note		lected, based on the console depth T.			
	x = 160 mm	+ 115 mm/2 -120 mm = 97.5 mm, d.h. x < 105 mm.			
Design table:		I/element]			
5	, –	$V/22.2 [kN/element] = 6.5 \cdot element,$			
		sokorb [®] XT type O required, spacing ≤ 15.00 m/7 = 2.14 m			
		7 = 143.8 kN/7 = 20.5 [kN/element] ≤ $V_{Rd,z}$ = 22.2 kN → NW o.k. \checkmark			
Normal force:	$N_{Rd,x} = 1/10 \cdot V$	_{Ed,z} = 1/10 · 20.5 [kN/element] = 2.05 [kN/element]			
	$N_{Rd,x,ges.}/7 = 13.5 \text{ kN}$	/7 = 1.9 [kN/element] < 2.05 [kN/element] → NW o.k. \checkmark			
Note:	The required number	of Schöck Isokorb [®] XT type O is determined by the shear force acceptance ca-			
	pacity V _{Rd,z} . The accep force V _{Ed,z} .	table normal force $N_{\mbox{\tiny Rd},x}$ results dependant on the actual impacting shear			
Selected:		höck Isokorb [®] XT type O-LR165-H200 which, taking into account the required			
	expansion joint, are a	rranged respectively at the ends of the console and in between distributed			
	evenly over the lengt	h l. Using 10 Schöck Isokorb® XT type O the position of the expansion joint			
	varies with simultane	varies with simultaneous observation of sensible edge distances of the Isokorbs. Through this the			
	sagging of the console can in any case be minimised.				

🗹 Check list

- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Have the concrete cover and the appropriate concrete grade been taken into consideration according to the building regulations?
- Has the maximum separation of the outermost Schöck Isokorb[®] types as a result of expansion in the outer structural components been maintained?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?

Schöck Isokorb® XT type B

Schöck Isokorb® XT type B

Suitable for cantilevered downstand beams and reinforced concrete beams. It transmits negative moments and positive shear forces.

Element arrangement | Installation cross sections

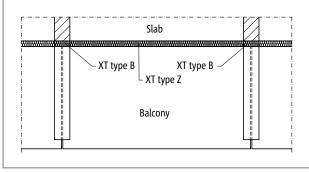


Fig. 256: Schöck Isokorb® XT type B: Balcony construction with freely cantilevered downstand beams (prefabricated balcony)

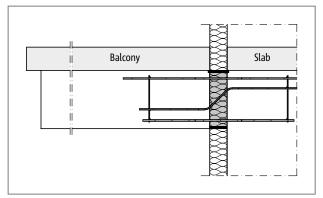


Fig. 258: Schöck Isokorb® XT type B: Balcony construction with freely cantilevered downstand beams (prefabricated balcony)

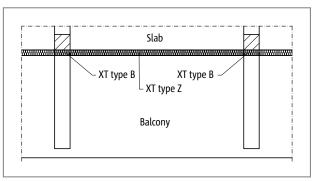


Fig. 257: Schöck Isokorb® XT type B: Balcony construction with freely cantilevered downstand beams

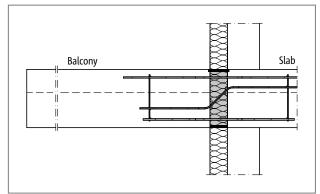
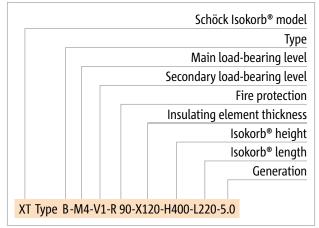


Fig. 259: Schöck Isokorb® XT type B: Balcony construction with freely cantilevered downstand beams

Product selection | Type designations | Special designs

Schöck Isokorb® XT type B variants


The configuration of the Schöck Isokorb® XT type B can vary as follows:

- Main load-bearing level:
 - M1 to M4
- Secondary load-bearing level: V1
- Fire resistance class:
- R90 (standard): Top fire protection board, projecting on both sides by both 10 mm
- Insulation element thickness:
- X120 = 120 mm
- Isokorb[®] height:H = 400 mm
- Isokorb[®] length:
 - L = 220 mm
- Generation:
- 5.0 Bondi
 - Bonding range: VB2 medium bonding (Bonding range II)

Variants

State desired dimensions on ordering.

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

C25/30 design

Schöck Isokorb® XT type B		M1	M2	M3	M4
Design values with		Concrete strength class ≥ C25/30			
		M _{Rd.y} [kNm/element]			
400		-29.6	-35.4	-47.7	-71.1
Isokorb® height		V _{Rd,z} [kN/element]			
H [mm]	400	30.9	48.3	69.5	94.7

Schöck Isokorb® XT type B	M1	M2	M3	M4
Isokorb® height H [mm]	400	400	400	400
Isokorb® length [mm]	220	220	220	220
Tension bars	3 Ø 10	3 Ø 12	3 Ø 14	3 Ø 16
Tension bars VB2 (poor)	835	1000	1160	1870
Shear force bars	2 Ø 8	2 Ø 10	2 Ø 12	2 Ø 14
Compression bars	3 Ø 12	3 Ø 14	3 Ø 16	3 Ø 20
Compression bar length	460	535	675	820

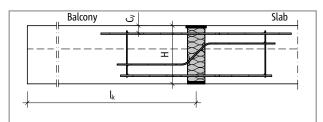


Fig. 260: Schöck Isokorb® XT type B: Static system

🚺 Notes on design

- Poor bonding conditions (bonding range II) are the basis for the determination of the compression member anchoring lengths.
- The indicative minimum concrete strength class of the external structural component is C32/40.

XT type B

200

Expansion joint spacing

Maximum expansion joint spacing

If the structural component length exceeds the maximum expansion joint spacing e, expansion joints must be installed in the exterior concrete structural components at right angles to the insulation plane, in order to limit the effect as a result of temperature changes.

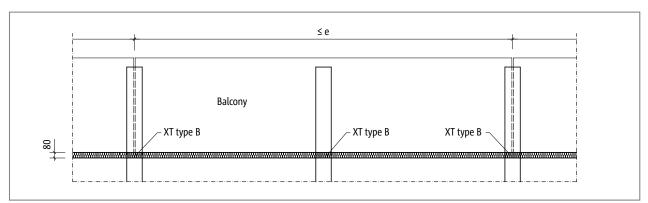


Fig. 261: Schöck Isokorb® XT type B: Expansion joint arrangement

Schöck Isokorb® XT type B		M1	M2	M3	M4
Maximum expansion joint spacing e		e [m]			
Insulating element thickness [mm]	120	19.8	17.0	15.5	13.5

Expansion joints

The expansion joint spacings can be enlarged, if there is no fixed connection between balcony slabs and downstand beams, e. g. through laying of a sliding foil.

Product description

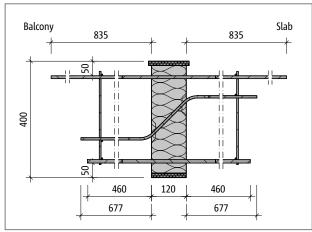


Fig. 262: Schöck Isokorb® XT type B: Product section

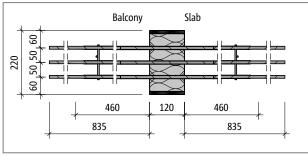


Fig. 263: Schöck Isokorb® XT type B: Product plan view

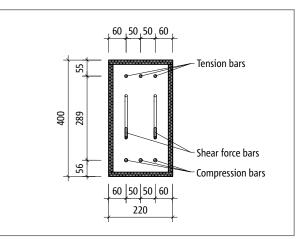


Fig. 264: Schöck Isokorb® XT type B: Product view

Product information

Download further product plan views and cross-sections at www.schoeck.co.uk/download

On-site reinforcement

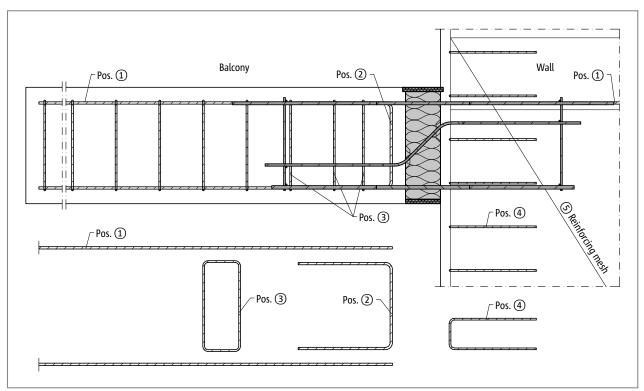


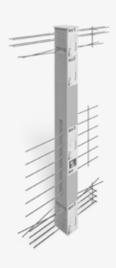
Fig. 265: Schöck Isokorb® XT type B: On-site reinforcement

Recommendation for the on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; positively selected: a_s lapping reinforcement $\ge a_s$ Isokorb[®] tension bars/compression members.

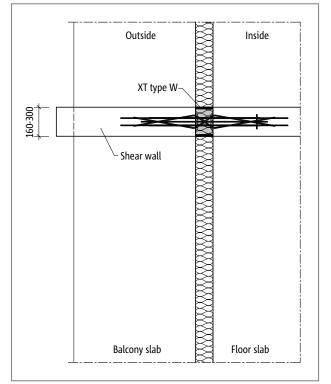
Schöck Isokorb® XT type B	M1	M2	M3	M4	
On-site reinforcement	Concrete strength class ≥ C25/30				
Pos. 1 Lapping reinforcement					
Pos. 1	3•H10	3 • H12	3 • H16	3 • H16	
Lap length VB2 (poor)	805	966	1127	1770	
Pos. 2 Suspension reinforcement	Pos. 2 Suspension reinforcement				
Pos. 2 [mm ²]	71	111	160	218	
Pos. 3 Stirrup					
Pos. 3	acc. to the specifications of the structural engineer				
Pos. 4 Side reinforcement at the free edge					
Pos. 4	according to BS EN 1992-1-1 (EC2), 9.3.1.4				
Pos. 5 Wall reinforcement and lapping reinforcement shear force bar					
Pos. 5	acc. to the specifications of the structural engineer				

Information about on-site reinforcement


Alternative connection reinforcement is possible. For the determination of the lap length, the rules according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA apply FA reduction of the required lap length with m_{Ed}/m_{Rd} is permitted.

The indicative minimum concrete strength class of the external structural component is C32/40.

🗹 Check list


- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- With the selection of the design table is the relevant concrete strength class taken into account?
- Are the maximum allowable expansion joint spacings taken into account?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Have the requirements for on-site reinforcement of connections been defined in each case?

Schöck Isokorb® XT type W

Schöck Isokorb® XT type W

Suitable for cantilevered sheared walls. It transmits negative moments and positive shear forces. In addition horizontal shear forces are transmitted.

Element arrangement | Installation cross section

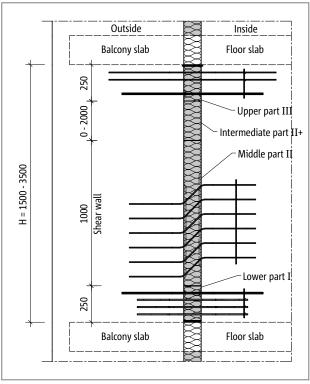


Fig. 266: Schöck Isokorb® XT type W: Plan view; balcony construction with thermally insulated load-bearing shear walls

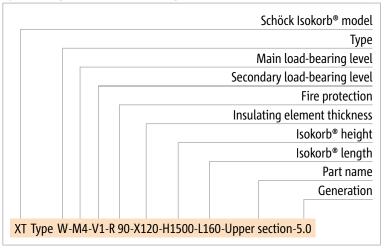
Fig. 267: Schöck Isokorb® XT type W: Balcony construction with thermally insulated load-bearing shear walls

Element arrangement

The Schöck Isokorb[®] XT type W consists of at least 3 parts: Lower part I, Middle part II, Upper part III. Depending on the height an insulating Intermediate part II+ is required.

Product selection | Type designations | Special designs

Schöck Isokorb® XT type W variants


The configuration of the Schöck Isokorb® XT type W can be varied as follows:

- Main load-bearing level: M1 to M4
- Secondary load-bearing level: V1
- Fire resistance class:
- R90 (standard): Top fire protection board, projecting on both sides by both 10 mm
- Insulation element thickness:
- X120 = 120 mm
- Isokorb[®] height:
- H = 1500 3500 mm
- Isokorb[®] length:
 - L = 150 300 mm with R0
 - L = 160 300 mm with R90
- Part designation: Upper part
- Generation: 5.0

🚺 Variants

> Please specify the required dimensions when ordering.

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

C25/30 design

Schöck Iso	okorb® XT type W	M1	M2	M3	M4	
Design values with		Concrete strength class ≥ C25/30				
		M _{Rd,y} [kNm/element]				
	1500 - 2490	-58.6	-101.4	-154.9	-113.6	
H [mm]	2000 - 2490	-80.8	-140.0	-213.9	-156.9	
	2500 - 3500	-103.0	-178.5	-272.8	-200.2	
		V _{Rd,z} [kN/element]				
	1500 - 3500	52.2	92.7	144.9	208.6	
H [mm]		V _{Rd,y} [kN/element]				
	1500 - 3500	±13.4	±13.4	±13.4	±13.4	

Schöck Isokorb® XT type W	M1	M2	M3	M4
Tension bars	4 Ø 6	4 Ø 8	4 Ø 10	4 Ø 12
Compression bars	6 Ø 8	6 Ø 10	6 Ø 12	6 Ø 14
Shear force bars vertical	6 Ø 6	6 Ø 8	6 Ø 10	6 Ø 12
Shear force bars horizontal	2 × 2 Ø 6	2 × 2 Ø 6	2 × 2 Ø 6	2 × 2 Ø 6
B _{min} with R0 [mm]	150	150	150	150
B _{min} with R90 [mm]	160	160	160	160

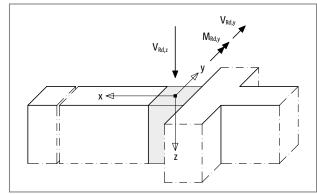


Fig. 268: Schöck Isokorb® XT type W: Sign rule for the design

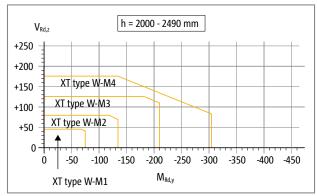


Fig. 271: Schöck Isokorb® XT type W: Interaction diagram

Fig. 270: Schöck Isokorb® XT type W: Interaction diagram

Notes on design

- Moments from wind loading are to be accepted by the stiffening effect of the balcony slab. If this is not possible then M_{Edz} can be transmitted by the additional arrangement of a Schöck Isokorb® XT type D. The XT type D in this case is installed in a vertical position in place of the insulating intermediate part.
- Poor bonding conditions (bonding range II) are the basis for the determination of the tension bar anchoring lengths.
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.

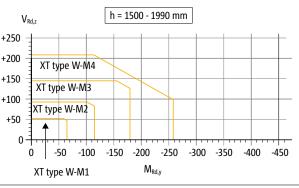
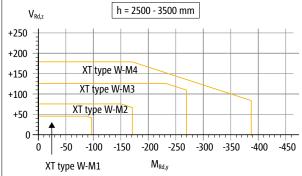



Fig. 269: Schöck Isokorb® XT type W: Interaction diagram

XT type W

Expansion joint spacing

Maximum expansion joint spacing

If the structural component length exceeds the maximum expansion joint spacing e, expansion joints must be installed in the exterior concrete structural components at right angles to the insulation plane, in order to limit the effect as a result of temperature changes.

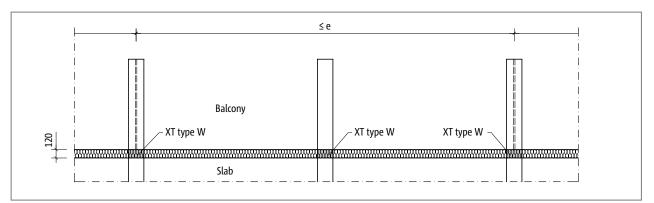


Fig. 272: Schöck Isokorb® XT type W: Expansion joint arrangement

Schöck Isokorb® XT type W		M1	M2	M3	M4
Maximum expansion joint spacing e		e [m]			
Insulating element thickness [mm]	120	23.0	21.7	19.8	17.0

Expansion joints

The expansion joint spacings can be enlarged, if there is no fixed connection between balcony slabs and shear walls, e. g. through laying of a sliding foil.

Product description

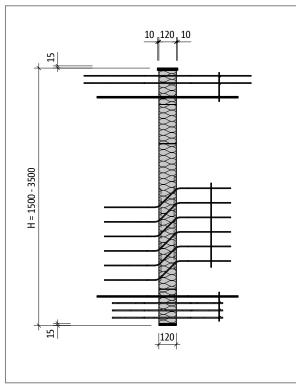


Fig. 273: Schöck Isokorb® XT type W-M1: Product section

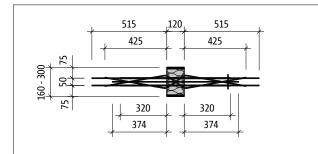


Fig. 275: Schöck Isokorb® XT type W-M1: Product plan view

I Product information

Download further product plan views and cross-sections at www.schoeck.co.uk/download

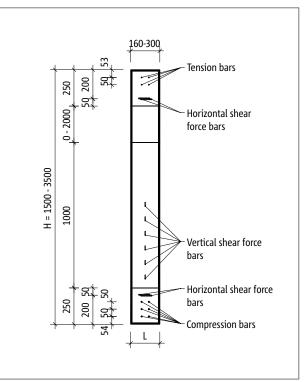


Fig. 274: Schöck Isokorb® XT type W-M1: Product view

On-site reinforcement

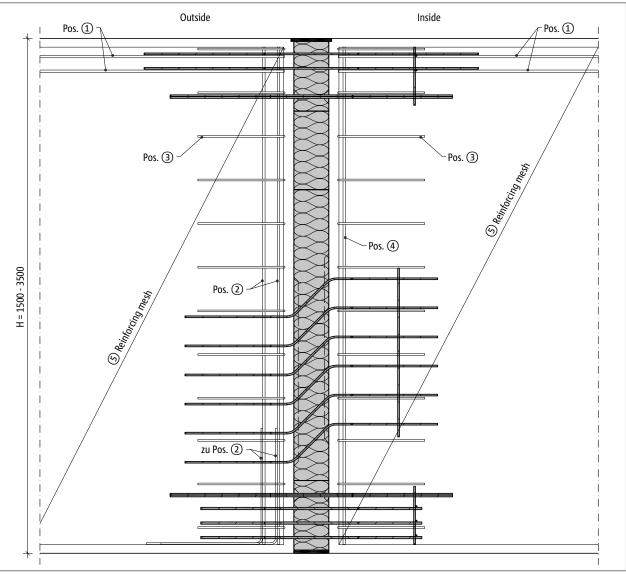
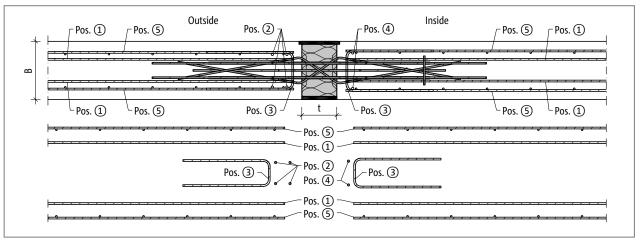
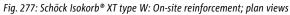




Fig. 276: Schöck Isokorb® XT type W: On-site reinforcement; section

On-site reinforcement

Recommendation for the on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; positively selected: a_s lapping reinforcement $\ge a_s$ Isokorb[®] tension bars/compression members.

Schöck Isokorb® XT type W	M1	M2	M3	M4	
On-site reinforcement	Concrete strength class ≥ C25/30				
Pos. 1 Lapping reinforcement					
Pos. 1	4 • H8	4 • H8	4 • H10	4 • H12	
Lap length l0 [mm]	483	644	805	966	
Pos. 2 Suspension reinforcement (anchoring with	Pos. 2 Suspension reinforcement (anchoring with stirrup or L)				
Pos. 2	4 • H8	4 • H10	4 • H12	4 • H16	
Pos. 3 and Pos. 4 Side reinforcement					
Pos. 3 and 4	acc. to the specifications of the structural engineer				
Pos. 5 Wall reinforcement and lapping reinforcement shear force bar					
Pos. 5	acc. to the specifications of the structural engineer				

Information about on-site reinforcement

Alternative connection reinforcement is possible. For the determination of the lap length, the rules according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA apply FA reduction of the required lap length with m_{Ed}/m_{Rd} is permitted.

The indicative minimum concrete strength class of the external structural component is C32/40.

Installation

Installation

The Schöck Isokorb® XT type W is supplied in various components (lower part, middle part, intermediate part, top part).

> Depending on the quantity ordered, same components on one pallet, with a view to transport safety.

🗹 Check list

- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- With the selection of the design table is the relevant concrete strength class taken into account?
- Are the maximum allowable expansion joint spacings taken into account?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Have the requirements for on-site reinforcement of connections been defined in each case?

Imprint

Published by:	Schöck Ltd					
	Staniford House					
	4 Wedgwood Road					
	Bicester					
	Oxfordshire					
	OX26 4UL					
	Telephone: 01865 290 890					
Copyright:	© 2019, Schöck Ltd					
	The contents of this publication must not be passed on to third parties, neither in full nor in part, without the written authorisation of Schöck Ltd. All technical details, drawings					
	etc. are protected by copyright laws.					

Subject to technical changes Date of publication: November 2020

Schöck Ltd Staniford House 4 Wedgwood Road Bicester Oxfordshire OX26 4UL Telephone: 01865 290 890 design@schoeck.co.uk www.schoeck.co.uk

Schöck Dependable by design